Review-Reversible Heat Effects in Cells Relevant for Lithium-Ion Batteries

被引:33
作者
Gunnarshaug, Astrid F. [1 ]
Vie, Preben J. S. [2 ,3 ]
Kjelstrup, Signe [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, PoreLab, NTNU, Trondheim, Norway
[2] Inst Energy Technol, Kjeller, Norway
[3] Norwegian Univ Sci & Technol, Dept Energy & Proc Technol, NTNU, Trondheim, Norway
关键词
Reversible heat effects; Thermal modelling; Seebeck coefficients; Peltier heats; GENERAL ENERGY-BALANCE; THERMAL-BEHAVIOR; ENTROPY CHANGE; INTERCALATION; THERMODYNAMICS; INSERTION; COEFFICIENT; TEMPERATURE; ELECTRODES; CHEMISTRY;
D O I
10.1149/1945-7111/abfd73
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We review measurements of reversible heat effects in lithium-ion batteries, i.e. entropy changes and Seebeck coefficients of cells with relevant electrodes. We show how to compute the Peltier heat of battery electrodes from Seebeck coefficients. The Seebeck coefficient depends on the heat of transfer (Soret effect), which is found from the difference of initial and stationary state values of the Seebeck coefficient. We apply non-equilibrium thermodynamics theory and obtain initial Peltier heats not reported before. For the oxidation of lithium metal we propose the value 34 +/- 2 kJ mol(-1) when the electrolyte contains 1 M LiPF6, while the value is 29 +/- 1 kJ mol(-1) when the electrolyte contains 1 M LiClO4. The positive values imply that the electrode cools when it serves as an anode. For oxidation of lithium under stationary state conditions, the stationary state Peltier heat is approximate to 120 kJ mol(-1). A large reversible heating effect can then be expected for the single electrode; much larger than expected from the full-cell entropy change. These values have a bearing on thermal modelling of batteries. Peltier heats for anodic reactions are presented in tables available for such modelling. We discuss the need for measurements and point at opportunities.
引用
收藏
页数:19
相关论文
共 83 条
[1]   THERMAL DIFFUSION IN NON-ISOTHERMAL CELLS .1. THEORETICAL RELATIONS AND EXPERIMENTS ON SOLUTIONS OF THALLOUS SALTS [J].
AGAR, JN ;
BRECK, WG .
TRANSACTIONS OF THE FARADAY SOCIETY, 1957, 53 (02) :167-178
[2]   THERMAL DIFFUSION IN SOLUTIONS OF ELECTROLYTES [J].
AGAR, JN ;
TURNER, JCR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 255 (1282) :307-330
[3]   Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode [J].
Al Hallaj, S ;
Venkatachalapathy, R ;
Prakash, J ;
Selman, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (07) :2432-2436
[4]   Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements [J].
Al Hallaj, S ;
Prakash, J ;
Selman, JR .
JOURNAL OF POWER SOURCES, 2000, 87 (1-2) :186-194
[5]   THERMODYNAMIC DATA OF ELECTROCHEMICAL LITHIUM INTERCALATION IN LIXMN2O4 [J].
BACH, S ;
PEREIRARAMOS, JP ;
BAFFIER, N ;
MESSINA, R .
ELECTROCHIMICA ACTA, 1992, 37 (07) :1301-1305
[6]   The Influence of Cell Temperature on the Entropic Coefficient of a Lithium Iron Phosphate (LFP) Pouch Cell [J].
Bazinski, S. J. ;
Wang, X. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) :A168-A175
[7]  
Bedeaux, 2020, NONEQUILIBRIUM THERM, V2
[8]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[9]   Temperature effect upon the thermoelectrochemical potential generated between lithium metal and lithium ion intercalation electrodes in symmetric and asymmetric battery arrangements [J].
Black, Jeffrey J. ;
Harper, Jason B. ;
Aldous, Leigh .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 86 :153-156
[10]   Huge Seebeck coefficients in nonaqueous electrolytes [J].
Bonetti, M. ;
Nakamae, S. ;
Roger, M. ;
Guenoun, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (11)