Design of experiments and statistical process control using wavelets analysis

被引:22
|
作者
Cohen, Achraf [1 ]
Tiplica, Teodor [1 ]
Kobi, Abdessamad [1 ]
机构
[1] LUNAM, ISTIA Engn Sch, LARIS Syst Engn Res Lab, 62 Ave Notre Dame du Lac, F-49000 Angers, France
关键词
Fault detection; Control charts; Design of experiments; Likelihood ratio; Wavelets transformations; Change time; Multiscale SPC; PRINCIPAL-COMPONENT ANALYSIS; FAULT-DETECTION; MULTIRESOLUTION ANALYSIS; ECONOMIC DESIGN; CLASSIFICATION; TRANSFORM; CORROSION;
D O I
10.1016/j.conengprac.2015.07.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, three new connections between Wavelets analysis and Statistical Quality Control are proposed. Firstly, we show that the Discrete Wavelet Transform, using Haar wavelet, is equivalent to the Xbar-R control scheme. Results concerning the distribution of wavelets coefficients, using others wavelets families, are presented, and then a new control chart, called DeWave, is proposed, in order to monitor the variability of the process. Secondly, the equivalence between the Likelihood Ratio and the Continuous Wavelet Transform, in terms of estimating the change time, is presented. Finally, we demonstrate that the Discrete Wavelet Transform is an equivalent representation of factorial Design Of Experiments. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 50 条
  • [21] Statistical Process Control Using Control Charts with Variable Parameters
    Salacinski, Tadeusz
    Chrzanowski, Jaroslaw
    Chmielewski, Tomasz
    PROCESSES, 2023, 11 (09)
  • [22] Evolution of multivariate statistical process control: application of independent component analysis and external analysis
    Kano, M
    Hasebe, S
    Hashimoto, I
    Ohno, H
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (6-7) : 1157 - 1166
  • [23] Using the design of simulation experiments to failures interactive effects analysis in process: a hypothetical case
    Leal, Fabiano
    de Almeida, Dagoberto Alves
    Barra Montevechi, Jose Arnaldo
    Silva Marins, Fernando Augusto
    SISTEMAS & GESTAO, 2007, 2 (03): : 285 - 302
  • [24] Statistical process monitoring using multiple PCA models
    Yang, YH
    Lu, NY
    Wang, FL
    Ma, LL
    Chang, YQ
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 5072 - 5073
  • [25] Flow chemistry for process optimisation using design of experiments
    Connor J. Taylor
    Alastair Baker
    Michael R. Chapman
    William R. Reynolds
    Katherine E. Jolley
    Graeme Clemens
    Gill E. Smith
    A. John Blacker
    Thomas W. Chamberlain
    Steven D. R. Christie
    Brian A. Taylor
    Richard A. Bourne
    Journal of Flow Chemistry, 2021, 11 : 75 - 86
  • [26] On the Use of the FuzzyARTMAP Neural Network for Pattern Recognition in Statistical Process Control using a Factorial Design
    Vazquez-Lopez, J. A.
    Lopez-Juarez, I.
    Pena-Cabrera, M.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2010, 5 (02) : 205 - 215
  • [27] Statistical Process Monitoring Based on Ensemble Structure Analysis
    Shi, Likang
    Tong, Chudong
    Lan, Ting
    Shi, Xuhua
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (08) : 1889 - 1891
  • [28] Flow chemistry for process optimisation using design of experiments
    Taylor, Connor J.
    Baker, Alastair
    Chapman, Michael R.
    Reynolds, William R.
    Jolley, Katherine E.
    Clemens, Graeme
    Smith, Gill E.
    Blacker, A. John
    Chamberlain, Thomas W.
    Christie, Steven D. R.
    Taylor, Brian A.
    Bourne, Richard A.
    JOURNAL OF FLOW CHEMISTRY, 2021, 11 (01) : 75 - 86
  • [29] Holistic Design of Experiments Using an Integrated Process Model
    Oberleitner, Thomas
    Zahel, Thomas
    Pretzner, Barbara
    Herwig, Christoph
    BIOENGINEERING-BASEL, 2022, 9 (11):
  • [30] Statistical Process Control Using a Dynamic Sampling Scheme
    Li, Zhonghua
    Qiu, Peihua
    TECHNOMETRICS, 2014, 56 (03) : 325 - 335