Deep Learning Based Instance Segmentation of Titanium Dioxide Particles in the Form of Agglomerates in Scanning Electron Microscopy

被引:32
作者
Monchot, Paul [1 ]
Coquelin, Loic [1 ]
Guerroudj, Khaled [1 ]
Feltin, Nicolas [2 ]
Delvallee, Alexandra [2 ]
Crouzier, Loic [2 ]
Fischer, Nicolas [1 ]
机构
[1] Data Sci & Uncertainty Dept, Natl Lab Metrol & Testing, 29 Ave Roger Hennequin, F-78197 Trappes, France
[2] Dept Mat Sci, Natl Lab Metrol & Testing, 29 Ave Roger Hennequin, F-78197 Trappes, France
关键词
scanning electron microscopy; mask R-CNN; deep learning; particle size distribution; instance segmentation; TiO2; agglomerate; IMAGE; SEARCH; AFM; SEM;
D O I
10.3390/nano11040968
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The size characterization of particles present in the form of agglomerates in images measured by scanning electron microscopy (SEM) requires a powerful image segmentation tool in order to properly define the boundaries of each particle. In this work, we propose to use an algorithm from the deep statistical learning community, the Mask-RCNN, coupled with transfer learning to overcome the problem of generalization of the commonly used image processing methods such as watershed or active contour. Indeed, the adjustment of the parameters of these algorithms is almost systematically necessary and slows down the automation of the processing chain. The Mask-RCNN is adapted here to the case study and we present results obtained on titanium dioxide samples (non-spherical particles) with a level of performance evaluated by different metrics such as the DICE coefficient, which reaches an average value of 0.95 on the test images.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A DEEP LEARNING METHOD WITH CRF FOR INSTANCE SEGMENTATION OF METAL-ORGANIC FRAMEWORKS IN SCANNING ELECTRON MICROSCOPY IMAGES
    Batatia, Ilyes
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 625 - 629
  • [2] Identification of nanocomposites agglomerates in scanning electron microscopy images based on semantic segmentation
    Bai, Yu
    Wang, Yan
    Qiang, Dayuan
    Yuan, Xin
    Wu, Jiehui
    Chen, Weilong
    Zhang, Sai
    Zhang, Yanru
    Chen, George
    IET NANODIELECTRICS, 2022, 5 (02) : 93 - 103
  • [3] Instance segmentation of quartz in iron ore optical microscopy images by deep learning
    Ferreira, Bernardo Amaral Pascarelli
    Augusto, Karen Soares
    Iglesias, Julio Cesar Alvarez
    Caldas, Thalita Dias Pinheiro
    Santos, Richard Bryan Magalhaes
    Paciornik, Sidnei
    MINERALS ENGINEERING, 2024, 211
  • [4] Review of object instance segmentation based on deep learning
    Tian, Di
    Han, Yi
    Wang, Biyao
    Guan, Tian
    Gu, Hengzhi
    Wei, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [5] Deep learning-based instance segmentation for improved pepper phenotyping
    Gomez-Zamanillo, Laura
    Galan, Pablo
    Bereciartua-Perez, Arantza
    Picon, Artzai
    Moreno, Jose Miguel
    Berns, Markus
    Echazarra, Jone
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [6] A Review of Research on Instance Segmentation Based on Deep Learning
    Yang, Qing
    Peng, Jiansheng
    Chen, Dunhua
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 43 - 53
  • [7] Deep learning based approach for the instance segmentation of clayey soil desiccation cracks
    Han, Xiao-Le
    Jiang, Ning-Jun
    Yang, Yu-Fei
    Choi, Jongseong
    Singh, Devandra N.
    Beta, Priyanka
    Du, Yan-Jun
    Wang, Yi-Jie
    COMPUTERS AND GEOTECHNICS, 2022, 146
  • [8] Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection
    Fatima, Anum
    Shafi, Imran
    Afzal, Hammad
    Mahmood, Khawar
    Diez, Isabel de la Torre
    Lipari, Vivian
    Ballester, Julien Brito
    Ashraf, Imran
    HEALTHCARE, 2023, 11 (03)
  • [9] Deep Learning-Based Instance Segmentation of Neural Progenitor Cell Nuclei in Fluorescence Microscopy Images
    Perez, Gabriel
    Cecilia Russo, Claudia
    Laura Palumbo, Maria
    David Moroni, Alejandro
    CLOUD COMPUTING, BIG DATA AND EMERGING TOPICS, JCC-BD&ET 2024, 2025, 2189 : 17 - 29
  • [10] Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
    Zhou, Yu-Cheng
    Hu, Zhen-Zhong
    Yan, Ke-Xiao
    Lin, Jia-Rui
    IEEE ACCESS, 2021, 9 : 148771 - 148782