Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes

被引:25
作者
Gorecki, Radoslaw [1 ,2 ]
Reurink, Dennis Maik [3 ]
Khan, Muntazim Munir [2 ]
Sanahuja-Embuena, Victoria [1 ,2 ]
Trzaskus, Krzysztof [2 ]
Helix-Nielsen, Claus [1 ]
机构
[1] Tech Univ Denmark, Dept Environm Engn, Bygningstorvet 11-5, DK-2800 Lyngby, Denmark
[2] Aquaporin AS, Nymollevej 78, DK-2800 Lyngby, Denmark
[3] Univ Twente, Membrane Sci & Technol, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
基金
欧盟地平线“2020”;
关键词
Aquaporin; Biomimetic membrane; Block copolymers; Polymersomes; Interfacial polymerization; AQUAPORIN MEMBRANES; WATER; DESALINATION; ROBUST;
D O I
10.1016/j.memsci.2019.117392
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Biomimetic aquaporin-based membranes offer great promise as a disruptive water treatment technology, due to their potential of improving membrane permeability without compromising solute rejection. However, fabrication upscaling is challenging and therefore the technological potential of biomimetic membranes remains unused. We propose an easily upscalable process based on bulk hydration of diblock and triblock copolymer mixture for preparation of polymersomes which can reconstitute aquaporin proteins. Such polymersomes are incorporated into biomimetic membranes via polyamide active layer synthesis based on interfacial polymerization. By incorporation of blank polymersomes, it was possible to improve water permeability of the membrane by 30%, and by incorporation of aquaporin reconstituting polymersomes by 50%, compared to the membranes without polymersomes. In both cases NaCl rejection was not affected. X-ray photoelectron spectroscopy measurements confirmed incorporation of copolymers prepared with aquaporins into the active polyamide layer without affecting the thickness of the membrane's active layer and surface zeta-potential.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Purification and functional comparison of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization [J].
Bjorkskov, Frederik Buhring ;
Krabbe, Simon Lyngaa ;
Nurup, Casper Normann ;
Missel, Julie Winkel ;
Spulber, Mariana ;
Bomholt, Julie ;
Molbaek, Karen ;
Helix-Nielsen, Claus ;
Gotfryd, Kamil ;
Gourdon, Pontus ;
Pedersen, Per Amstrup .
SCIENTIFIC REPORTS, 2017, 7
[2]  
Chau M., 1991, Patent No. [WO9108828, 9108828]
[3]   Polymer vesicles [J].
Discher, DE ;
Eisenberg, A .
SCIENCE, 2002, 297 (5583) :967-973
[4]   Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration [J].
Duong, Phuoc H. H. ;
Chung, Tai-Shung ;
Jeyaseelan, Kandiah ;
Armugam, Arunmozhiarasi ;
Chen, Zaichun ;
Yang, Jing ;
Hong, Minghui .
JOURNAL OF MEMBRANE SCIENCE, 2012, 409 :34-43
[5]   Technical evaluation of a small-scale reverse osmosis desalination unit for domestic water [J].
Elfil, H. ;
Hamed, A. ;
Hannachi, A. .
DESALINATION, 2007, 203 (1-3) :319-326
[6]   Quantification of Aquaporin-Z reconstituted into vesicles for biomimetic membrane fabrication [J].
Gan, Hui Xian ;
Zhou, Hu ;
Lin, Qingsong ;
Tong, Yen Wah .
SCIENTIFIC REPORTS, 2017, 7
[7]  
Grzelakowski M. P., 2015, Patent No. [WO2015144725A1, 2015144725]
[8]  
Grzelakowski M. P., 2018, Patent No. [WO2015144725, 2015144725]
[9]   A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes [J].
Grzelakowski, Mariusz ;
Cherenet, Meron F. ;
Shen, Yue-xiao ;
Kumar, Manish .
JOURNAL OF MEMBRANE SCIENCE, 2015, 479 :223-231
[10]  
Helix-Nielsen C., 2015, BIOMIMETIC MEMBRANES, DOI [10.1017/CBO9781107415324.004, DOI 10.1017/CBO9781107415324.004]