Combining multi-mode representations and ResNet for SAR target recognition

被引:10
|
作者
Shang, Shanshan [1 ]
Li, Guoping [2 ]
Wang, Guozhong [2 ]
机构
[1] Shanghai Univ Engn Sci, Lib, Shanghai, Peoples R China
[2] Shanghai Univ Engn Sci, Inst Artificial Intelligence Ind, Shanghai 201620, Peoples R China
基金
国家重点研发计划;
关键词
EMPIRICAL MODE DECOMPOSITION; SPARSE REPRESENTATION; CLASSIFICATION; IMAGES;
D O I
10.1080/2150704X.2021.1910363
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This letter combines the multi-mode representations extracted by bidimensional empirical mode decomposition (BEMD) and deep residual networks (ResNet) for synthetic aperture radar (SAR) target recognition. Bidimensional intrinsic mode functions (BIMFs) are generated by BEMD to describe the target characteristics in SAR images. A special ResNet is designed and trained for each layer of BIMFs. The decisions from different BIMFs are linearly fused using a random weight matrix. Typical test scenarios are designed on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset to examine the proposed method. The results validate the validity and robustness of the method.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 50 条
  • [1] Design and analysis of multi-mode cluster SAR
    Pi, YM
    Xin, X
    Yang, JY
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3049 - 3051
  • [2] DESIGN AND ANALYSIS OF MULTI-MODE CLUSTER SAR
    Fan Luhong Pi Yiming Hou Yinming School of Electronic Engineering UEST of China Chengdu
    JournalofElectronics, 2004, (05) : 401 - 406
  • [3] DESIGN AND ANALYSIS OF MULTI-MODE CLUSTER SAR
    Fan Luhong Pi Yiming Hou Yinming (School of Electronic Engineering
    Journal of Electronics(China), 2004, (05) : 401 - 406
  • [4] Designing a spaceborne SAR for multi-mode imaging
    Brand, A
    Ali, Z
    1996 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING - CONFERENCE PROCEEDINGS, VOLS I AND II: THEME - GLIMPSE INTO THE 21ST CENTURY, 1996, : 17 - 20
  • [5] An Intelligent Target Feature Recognition Method Based on Multi-mode OAM Beams
    Zhou N.
    Zhu S.
    Nian Y.
    Tian C.
    Zhang A.
    Journal of Radars, 2021, 10 (05) : 760 - 772
  • [6] SMALL SAMPLE LEARNING OPTIMIZATION FOR RESNET BASED SAR TARGET RECOGNITION
    Fu, Zhenzhen
    Zhang, Fan
    Yin, Qiang
    Li, Ruirui
    Hu, Wei
    Li, Wei
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2330 - 2333
  • [7] Multi-mode SAR Interferometry Processing Research and Implementation
    Liang, Cunren
    Zeng, Qiming
    Jia, Jianying
    Zhou, Xiao
    Jiao, Jian
    Cui, Xi'ai
    PIERS 2010 XI'AN: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 16 - 19
  • [8] Multi-Mode Radar Target Detection and Recognition Using Neural Networks Regular Paper
    Briones, Janette C.
    Flores, Benjamin
    Cruz-Cano, Raul
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2012, 9
  • [9] Multi-mode target tracking on a crowd scene
    Lien, Cheng-Chang
    Wang, Jian-Cheng
    Jiang, Yue-Min
    2007 THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, VOL II, PROCEEDINGS, 2007, : 427 - 430
  • [10] SAR target recognition by combining images of the shadow region and target region
    Ding, Jun
    Liu, Hong-Wei
    Wang, Ying-Hua
    Wang, Zheng-Jue
    Qi, Hui-Jiao
    Shi, Li-Hui
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (03): : 594 - 600