Maximum likelihood bounded tree-width Markov networks

被引:28
作者
Srebro, N [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
Markov networks; Markov random fields; undirected graphical models; entropy decomposition; hyper-trees; tree-width; hardness;
D O I
10.1016/S0004-3702(02)00360-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of projecting a distribution onto (or finding a maximum likelihood distribution among) Markov networks of bounded tree-width. By casting it as the combinatorial optimization problem of finding a maximum weight hypertree, we prove that it is NP-hard to solve exactly and provide an approximation algorithm with a provable performance guarantee. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 16 条
[1]  
Alon N., 1991, The Probabilistic Method
[2]   Information geometry on hierarchy of probability distributions [J].
Amari, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :1701-1711
[3]  
[Anonymous], 1997, PROBABILISTIC REASON
[4]  
BESAG J, 1974, P ROY STAT SOC SER B, P192
[5]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[6]  
Chickering D.M., 1996, Learning Bayesian Networks is NPComplete, V112, P121, DOI DOI 10.1007/978-1-4612-2404-4_12
[7]   APPROXIMATING DISCRETE PROBABILITY DISTRIBUTIONS WITH DEPENDENCE TREES [J].
CHOW, CK ;
LIU, CN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (03) :462-+
[8]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[9]  
Dasgupta S, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P134
[10]  
Hoffgen K.-U., 1993, Proceeding of the Sixth Annual ACM Conference on Computational Learning Theory, P77, DOI 10.1145/168304.168314