Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds

被引:23
作者
James, J. D. Mireles [1 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2015年 / 26卷 / 01期
基金
美国国家科学基金会;
关键词
Dynamical systems; Stable manifolds; Rigorous numerics; Parameter continuation; HYPERBOLIC INVARIANT-MANIFOLDS; QUASI-PERIODIC MAPS; NUMERICAL COMPUTATION; COVERING RELATIONS; CONNECTING ORBITS; DYNAMICAL-SYSTEMS; HETEROCLINIC ORBITS; HOMOCLINIC ORBITS; CONE CONDITIONS; VECTOR-FIELDS;
D O I
10.1016/j.indag.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work describes a method for approximating a branch of stable or unstable manifolds associated with a branch of hyperbolic fixed points or equilibria in a one parameter family of analytic dynamical systems. We approximate the branch of invariant manifolds by polynomials and develop a-posteriori theorems which provide mathematically rigorous bounds on the truncation error. The hypotheses of these theorems are formulated in terms of certain inequalities which are checked via a finite number of calculations on a digital computer. By exploiting the analytic category we are able to obtain mathematically rigorous bounds on the jets of the manifolds, as well as on the derivatives of the manifolds with respect to the parameter. A number of example computations are given. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 265
页数:41
相关论文
共 68 条
[11]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360
[12]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[13]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[14]   A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification [J].
Calleja, Renato ;
de la Llave, Rafael .
NONLINEARITY, 2010, 23 (09) :2029-2058
[15]   Fast numerical computation of quasi-periodic equilibrium states in 1D statistical mechanics, including twist maps [J].
Calleja, Renato ;
de la Llave, Rafael .
NONLINEARITY, 2009, 22 (06) :1311-1336
[16]  
Canadell M., SEMA SIMAI IN PRESS, V4
[17]  
Canadell M., 2014, THESIS U BARCELONA
[18]   COVERING RELATIONS AND THE EXISTENCE OF TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT SETS [J].
Capinski, Maciej J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :705-725
[19]   Computer assisted proof for normally hyperbolic invariant manifolds [J].
Capinski, Maciej J. ;
Simo, Carles .
NONLINEARITY, 2012, 25 (07) :1997-2026
[20]   Existence of a Center Manifold in a Practical Domain around L1 in the Restricted Three-Body Problem [J].
Capinski, Maciej J. ;
Roldan, Pablo .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01) :285-318