Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds

被引:23
作者
James, J. D. Mireles [1 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2015年 / 26卷 / 01期
基金
美国国家科学基金会;
关键词
Dynamical systems; Stable manifolds; Rigorous numerics; Parameter continuation; HYPERBOLIC INVARIANT-MANIFOLDS; QUASI-PERIODIC MAPS; NUMERICAL COMPUTATION; COVERING RELATIONS; CONNECTING ORBITS; DYNAMICAL-SYSTEMS; HETEROCLINIC ORBITS; HOMOCLINIC ORBITS; CONE CONDITIONS; VECTOR-FIELDS;
D O I
10.1016/j.indag.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work describes a method for approximating a branch of stable or unstable manifolds associated with a branch of hyperbolic fixed points or equilibria in a one parameter family of analytic dynamical systems. We approximate the branch of invariant manifolds by polynomials and develop a-posteriori theorems which provide mathematically rigorous bounds on the truncation error. The hypotheses of these theorems are formulated in terms of certain inequalities which are checked via a finite number of calculations on a digital computer. By exploiting the analytic category we are able to obtain mathematically rigorous bounds on the jets of the manifolds, as well as on the derivatives of the manifolds with respect to the parameter. A number of example computations are given. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 265
页数:41
相关论文
共 68 条
[1]  
Ahlfors L.V., 1978, INT SERIES PURE APPL
[2]   A Homoclinic Solution for Excitation Waves on a Contractile Substratum [J].
Ambrosi, D. ;
Arioli, G. ;
Koch, H. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04) :1533-1542
[3]  
[Anonymous], 1999, Developments in reliable computing, DOI DOI 10.1007/978-94-017-1247-7
[4]   The Henon-Heiles Hamiltonian near the critical energy level - some rigorous results [J].
Arioli, G ;
Zgliczynski, P .
NONLINEARITY, 2003, 16 (05) :1833-1852
[5]   Symbolic dynamics for the Henon-Heiles Hamiltonian on the critical level [J].
Arioli, G ;
Zgliczynski, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (01) :173-202
[6]  
Berz M., 1998, Reliable Computing, V4, P361, DOI 10.1023/A:1024467732637
[7]  
Beyn W.J., 1990, IMA J. Numer. Anal, V9, P379
[8]   Numerical approximation of homoclinic chaos [J].
Beyn, WJ ;
Kleinkauf, JM .
NUMERICAL ALGORITHMS, 1997, 14 (1-3) :25-53
[9]   The numerical computation of homoclinic orbits for maps [J].
Beyn, WJ ;
Kleinkauf, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1207-1236
[10]   Numerical Taylor expansions of invariant manifolds in large dynamical systems [J].
Beyn, WJ ;
Kless, W .
NUMERISCHE MATHEMATIK, 1998, 80 (01) :1-38