Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning

被引:61
作者
Badowski, Tomasz [1 ]
Gajewska, Ewa P. [1 ]
Molga, Karol [1 ]
Grzybowski, Bartosz A. [1 ,2 ,3 ]
机构
[1] Polish Acad Sci, Inst Organ Chem, Ul Kasprzaka 44-52, PL-01224 Warsaw, Poland
[2] UNIST, IBS Ctr Soft & Living Matter, 50 UNIST Gil, Ulsan, South Korea
[3] UNIST, Dept Chem, 50 UNIST Gil, Ulsan, South Korea
关键词
artificial intelligence; computer-aided retrosynthesis; expert systems; neural networks; COMPUTER; DESIGN;
D O I
10.1002/anie.201912083
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
When computers plan multistep syntheses, they can rely either on expert knowledge or information machine-extracted from large reaction repositories. Both approaches suffer from imperfect functions evaluating reaction choices: expert functions are heuristics based on chemical intuition, whereas machine learning (ML) relies on neural networks (NNs) that can make meaningful predictions only about popular reaction types. This paper shows that expert and ML approaches can be synergistic-specifically, when NNs are trained on literature data matched onto high-quality, expert-coded reaction rules, they achieve higher synthetic accuracy than either of the methods alone and, importantly, can also handle rare/specialized reaction types.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 2009, Springer series in statistics, DOI DOI 10.1007/978-0-387-84858-7_14
[2]   Selection of cost-effective yet chemically diverse pathways from the networks of computer-generated retrosynthetic plans [J].
Badowski, Tomasz ;
Molga, Karol ;
Grzybowski, Bartosz A. .
CHEMICAL SCIENCE, 2019, 10 (17) :4640-4651
[3]   Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification [J].
Baylon, Javier L. ;
Cilfone, Nicholas A. ;
Gulcher, Jeffrey R. ;
Chittenden, Thomas W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (02) :673-688
[4]   Route Design in the 21st Century: The ICSYNTH Software Tool as an Idea Generator for Synthesis Prediction [J].
Bogevig, Anders ;
Federsel, Hans-Juergen ;
Huerta, Fernando ;
Hutchings, Michael G. ;
Kraut, Hans ;
Langer, Thomas ;
Loew, Peter ;
Oppawsky, Christoph ;
Rein, Tobias ;
Saller, Heinz .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2015, 19 (02) :357-368
[5]   Mining Electronic Laboratory Notebooks: Analysis, Retrosynthesis, and Reaction Based Enumeration [J].
Christ, Clara D. ;
Zentgraf, Matthias ;
Kriegl, Jan M. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (07) :1745-1756
[6]   A robotic platform for flow synthesis of organic compounds informed by AI planning [J].
Coley, Connor W. ;
Thomas, Dale A., III ;
Lummiss, Justin A. M. ;
Jaworski, Jonathan N. ;
Breen, Christopher P. ;
Schultz, Victor ;
Hart, Travis ;
Fishman, Joshua S. ;
Rogers, Luke ;
Gao, Hanyu ;
Hicklin, Robert W. ;
Plehiers, Pieter P. ;
Byington, Joshua ;
Piotti, John S. ;
Green, William H. ;
Hart, A. John ;
Jamison, Timothy F. ;
Jensen, Klavs F. .
SCIENCE, 2019, 365 (6453) :557-+
[7]   RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application [J].
Coley, Connor W. ;
Green, William H. ;
Jensen, Klays F. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (06) :2529-2537
[8]   Machine Learning in Computer-Aided Synthesis Planning [J].
Coley, Connor W. ;
Green, William H. ;
Jensen, Klays F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (05) :1281-1289
[9]   COMPUTER-ASSISTED DESIGN OF COMPLEX ORGANIC SYNTHESES [J].
COREY, EJ ;
WIPKE, WT .
SCIENCE, 1969, 166 (3902) :178-&
[10]  
GRZYBOWSKI B, 2018, ABSTR PAP AM CHEM S, V256