Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases

被引:110
作者
Ehmann, DE [1 ]
Trauger, JW [1 ]
Stachelhaus, T [1 ]
Walsh, CT [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
来源
CHEMISTRY & BIOLOGY | 2000年 / 7卷 / 10期
关键词
condensation domain; nonribosomal peptide synthetase; substrate specificity;
D O I
10.1016/S1074-5521(00)00022-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) domains within the synthetase by thioester linkages. Characterizing C domain substrate specificity is important for the engineered biosynthesis of new compounds. Results: We synthesized a series of aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) and show that they are small-molecule substrates for NRPS C domains. Comparison of rates of peptide bond formation catalyzed by the C domain from enterobactin synthetase with various aminoacyl-SNACs as downstream (acceptor) substrates revealed high selectivity for the natural substrate analog L-Ser-SNAC. Comparing L- and D-Phe-SNACs as upstream (donor) substrates for the first C domain from tyrocidine synthetase revealed clear D- versus L-selectivity, Conclusions: Aminoacyl-SNACs are substrates for NRPS C domains and are useful for characterizing the substrate specificity of C domain-catalyzed peptide bond formation.
引用
收藏
页码:765 / 772
页数:8
相关论文
共 26 条
[1]   Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis [J].
Belshaw, PJ ;
Walsh, CT ;
Stachelhaus, T .
SCIENCE, 1999, 284 (5413) :486-489
[2]   Dipeptide formation on engineered hybrid peptide synthetases [J].
Doekel, S ;
Marahiel, MA .
CHEMISTRY & BIOLOGY, 2000, 7 (06) :373-384
[3]   The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase:: Sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates [J].
Ehmann, DE ;
Shaw-Reid, CA ;
Losey, HC ;
Walsh, CT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2509-2514
[4]   Enterobactin biosynthesis in Escherichia coli: Isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate [J].
Gehring, AM ;
Bradley, KA ;
Walsh, CT .
BIOCHEMISTRY, 1997, 36 (28) :8495-8503
[5]   Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF [J].
Gehring, AM ;
Mori, I ;
Walsh, CT .
BIOCHEMISTRY, 1998, 37 (08) :2648-2659
[6]   The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis [J].
Gehring, AM ;
Mori, I ;
Perry, RD ;
Walsh, CT .
BIOCHEMISTRY, 1998, 37 (33) :11637-11650
[7]   Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis [J].
Gehring, AM ;
DeMoll, E ;
Fetherston, JD ;
Mori, I ;
Mayhew, GF ;
Blattner, FR ;
Walsh, CT ;
Perry, RD .
CHEMISTRY & BIOLOGY, 1998, 5 (10) :573-586
[8]   CALCULATION OF PROTEIN EXTINCTION COEFFICIENTS FROM AMINO-ACID SEQUENCE DATA [J].
GILL, SC ;
VONHIPPEL, PH .
ANALYTICAL BIOCHEMISTRY, 1989, 182 (02) :319-326
[9]   Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase [J].
Gokhale, RS ;
Hunziker, D ;
Cane, DE ;
Khosla, C .
CHEMISTRY & BIOLOGY, 1999, 6 (02) :117-125
[10]   Molecular basis of Celmer's rules: the role of two ketoreductase domains in the control of chirality by the erythromycin modular polyketide synthase [J].
Holzbaur, IE ;
Harris, RC ;
Bycroft, M ;
Cortes, J ;
Bisang, C ;
Staunton, J ;
Rudd, BAM ;
Leadlay, PF .
CHEMISTRY & BIOLOGY, 1999, 6 (04) :189-195