Bifurcation of Nontrivial Periodic Solutions for a Food Chain Beddington-DeAngelis Interference Model with Impulsive Effect

被引:2
作者
Wang Shuai [1 ]
Huang Qingdao [2 ]
机构
[1] Changchun Univ Sci & Technol, Sch Sci, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130000, Jilin, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2018年 / 28卷 / 11期
关键词
Food chain model; impulsive effect; permanence; existence of nontrivial solution; MARTIN FUNCTIONAL-RESPONSE; PREDATOR-PREY MODEL; DYNAMICS; VACCINATION; STRATEGY; THERAPY; SYSTEM;
D O I
10.1142/S0218127418501316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a food chain Beddington-DeAngelis interference model with impulsive effect is studied. The trivial periodic solution is locally asymptotically stable if the release rate or the release period is suitable. Conditions for permanence of the model are obtained. The existence of nontrivial periodic solutions and semi-trivial periodic solutions are established when the trivial periodic solution loses its stability under different conditions.
引用
收藏
页数:16
相关论文
共 20 条
[1]   PULSE MASS MEASLES VACCINATION ACROSS AGE COHORTS [J].
AGUR, Z ;
COJOCARU, L ;
MAZOR, G ;
ANDERSON, RM ;
DANON, YL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11698-11702
[2]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[3]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[4]   Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999) [J].
d'Onofrio, A ;
Gandolfi, A .
MATHEMATICAL BIOSCIENCES, 2004, 191 (02) :159-184
[5]   MODEL FOR TROPHIC INTERACTION [J].
DEANGELIS, DL ;
GOLDSTEIN, RA ;
ONEILL, RV .
ECOLOGY, 1975, 56 (04) :881-892
[6]  
Lakmeche A, 2000, DYN CONTIN DISCRET I, V7, P265
[7]   Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors [J].
Lakmeche, A ;
Arino, O .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2001, 2 (04) :455-465
[8]  
Lakmeche A., 2014, ELECT J MATH ANAL AP, V2, P127
[9]  
Lakshmikantham V., 1989, World scientific, V6
[10]   Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator [J].
Liu, XN ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :311-320