Classification of the PolSAR Data Using Dual Classifiers

被引:0
|
作者
Duan, Yan [1 ]
Duan, Huili [2 ]
Sun, Mingwei [3 ]
机构
[1] Hubei Geomat Informat Ctr, Wuhan, Hubei, Peoples R China
[2] Yichang Surveying & Mapping Trade Soc, Yichang, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
关键词
PolSAR; polarimetric decomposition; watershed segmentation; polarimetric feature; DTA; SVM; dual classifiers; LAND-COVER; DECOMPOSITION; ALGORITHM; IMAGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classification of the polarimetric synthetic aperture radar (PolSAR) data is an important facet of synthetic aperture radar (SAR) image interpretation. In general, many polarimetric features can be extracted from PolSAR data. However, not all features are benefit for classification and too many polarimetric features result in the low classification efficiency. We introduce a method to deal with many polarimetric features and obtain both high classification accuracy and high classification efficiency. We first preprocess the PolSAR data to obtain objects, i.e., homogeneous regions. Next, we apply polarimetric feature processing to compute various polarimetric features of the PolSAR data. Based on the classification of the sample information, we then select the prominent polarimetric features using the data mining attributes of decision tree algorithm (DTA). Finally, we obtain classification results through the selected polarimetric features by DTA, the sample data and support vector machine (SVM). We verified the proposed method using the AirSAR L-Band PolSAR data. Our experiments indicate that the classification accuracy of the proposed method is equivalent to that of SVM and the computational efficiency is comparable to that of DTA. Thus, the proposed method integrates the advantages of both DTA and SVM.
引用
收藏
页码:316 / 320
页数:5
相关论文
共 50 条
  • [21] FUSION OF OPTICAL AND MULTIFREQUENCY POLSAR DATA FOR FOREST CLASSIFICATION
    Kasapoglu, N. Gokhan
    Anfinsen, Stian N.
    Eltoft, Torbjorn
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3355 - 3358
  • [22] Adaptive Model-Based Classification of PolSAR Data
    Li, Dong
    Zhang, Yunhua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 6940 - 6955
  • [23] Classification With a Non-Gaussian Model for PolSAR Data
    Doulgeris, Anthony P.
    Anfinsen, Stian Normann
    Eltoft, Torbjorn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10): : 2999 - 3009
  • [24] Online Semisupervised Active Classification for Multiview PolSAR Data
    Nie, Xiangli
    Fan, Mingyu
    Huang, Xiayuan
    Yang, Wenjing
    Zhang, Bo
    Ma, Xiaoshuang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (06) : 4415 - 4429
  • [25] VARIABLE IMPORTANCE AND RANDOM FOREST CLASSIFICATION USING RADARSAT-2 POLSAR DATA
    Hariharan, Siddharth
    Tirodkar, Siddhesh
    De, Shaunak
    Bhattacharya, Avik
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1210 - 1213
  • [26] PolSAR Image Classification using Discriminative Clustering
    Bi, Haixia
    Sun, Jian
    Xu, Zongben
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [27] Ensemble Classification of PolSAR Data Using Multi-Objective Heuristic Combination Rule
    Saleh, Reza
    Farsi, Hasan
    Zahiri, Seyyed Hamid
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 88 - 92
  • [28] Classification by Retrieval: Binarizing Data and Classifiers
    Shen, Fumin
    Mu, Yadong
    Yang, Yang
    Liu, Wei
    Liu, Li
    Song, Jingkuan
    Shen, Heng Tao
    SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 595 - 604
  • [29] Classification accuracy improvement of neural network classifiers by using unlabeled data
    Fardanesh, MT
    Ersoy, OK
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03): : 1020 - 1025
  • [30] Improved classification of crystallization images using data fusion and multiple classifiers
    Buchala, Samarasena
    Wilson, Julie C.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2008, 64 : 823 - 833