Synergistic effects of double substitution in LiNi0.5-yFeyMn1.5O4 spinel as 5 V cathode materials

被引:53
作者
Alcántara, R [1 ]
Jaraba, M [1 ]
Lavela, P [1 ]
Lloris, JM [1 ]
Vicente, CP [1 ]
Tirado, JL [1 ]
机构
[1] Univ Cordoba, Lab Quim Inorgan, E-14071 Cordoba, Spain
关键词
D O I
10.1149/1.1827571
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Spinel oxides with LiMxMn2-xO4 (M = Fe, Ni) formula are known to be interesting electrode materials for lithium-ion batteries. These materials show a significant near 5 V capacity, which results from changes in the oxidation state of the transition metal M. In this work, compounds of the LiNi0.5-yFeyMn1.5O4 series have been characterized. The charge/discharge curves of lithium test cells using these compounds as active electrode material show two plateaus. The first one, below 4.5 V, is ascribed to a Mn4+/Mn3+ pair, while the second, between 4.5 and 5.1 V, can be attributed to Ni4+/ Ni2+ and Fe4+/ Fe3+ pairs. High capacity and excellent capacity retention is obtained for some compositions with intermediate y values. The suppression of the multiphase mechanism of insertion-deinsertion commonly found for LiNi0.5\Mn1.5O4 by iron substitution is evidenced for compositions in the 0, y less than or equal to 1 range. The change in mechanism is correlated with the improvement in electrochemical performance. Moreover, cation distribution, which includes the presence of iron in the tetrahedral sites of the spinel structure, stabilizes the solid upon prolonged cycling. (C) 2004 The Electrochemical Society.
引用
收藏
页码:A13 / A18
页数:6
相关论文
共 20 条
  • [1] Structural and electrochemical study of new LiNi0.5TixMn1.5-xO4 spinel oxides for 5-V cathode materials
    Alcántara, R
    Jaraba, M
    Lavela, P
    Tirado, JL
    Biensan, P
    de Guibert, A
    Jordy, C
    Peres, JP
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (12) : 2376 - 2382
  • [2] Electrochemical, 6Li MAS NMR, and X-ray and neutron diffraction study of LiCoxFeyMn2-(x+y)O4 spinel oxides for high-voltage cathode materials
    Alcántara, R
    Jaraba, M
    Lavela, P
    Tirado, JL
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (05) : 1210 - 1216
  • [3] Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1-xNi0.5Mn1.5O4 spinel
    Alcántara, R
    Jaraba, M
    Lavela, P
    Tirado, JL
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (11) : 1829 - 1835
  • [4] ALCANTARA R, 2004, J ELECTROCHEM SOC, V150, P58
  • [5] Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries
    Amatucci, G
    Tarascon, JM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) : K31 - K46
  • [6] Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells
    Ariyoshi, K
    Iwakoshi, Y
    Nakayama, N
    Ohzuku, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (02) : A296 - A303
  • [7] Synthesis and characterization of Li2MxMn4-xO8 (M = Co, Fe) as positive active materials for lithium-ion cells
    Bonino, F
    Panero, S
    Satolli, D
    Scrosati, B
    [J]. JOURNAL OF POWER SOURCES, 2001, 97-8 : 389 - 392
  • [8] LiMn2-xCuxO4 spinels (0.1≤x≤0.5):: A new class of 5 V cathode materials for Li batteries -: I.: Electrochemical, structural, and spectroscopic studies
    Ein-Eli, Y
    Howard, WF
    Lu, SH
    Mukerjee, S
    McBreen, J
    Vaughey, JT
    Thackeray, MM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) : 1238 - 1244
  • [9] LiNixCu0.5-xMn1.5O4 spinel electrodes, superior high-potential cathode materials for Li batteries -: I.: Electrochemical and structural studies
    Ein-Eli, Y
    Vaughey, JT
    Thackeray, MM
    Mukerjee, S
    Yang, XQ
    McBreen, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) : 908 - 913
  • [10] Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M = Fe, Cu, Al, Mg; y=0.0-0.4)
    Fey, GTK
    Lu, CZ
    Kumar, TP
    [J]. JOURNAL OF POWER SOURCES, 2003, 115 (02) : 332 - 345