A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS

被引:3
|
作者
Pathan, M. A. [1 ]
Khan, Waseem A. [2 ]
机构
[1] KFRI, Ctr Math & Stat Sci CMSS, Peechi PO, Trichur 680653, Kerala, India
[2] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
关键词
Hermite polynomials; Bernoulli polynomials; poly-Bernoulli polynomials; Hermitepoly-Bernoulli polynomials; summation formulae; symmetric identities;
D O I
10.18514/MMN.2021.1684
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Phi((alpha))(n) (x, nu) of degree n and order alpha introduced by Dere and Simsek. The concepts of poly-Bernoulli numbers, poly-Bernoulli polynomials, Hermite-Bernoulli polynomials and generalized Hermite-Bernoulli polynomials are generalized to polynomials of three positive real parameters. Numerous properties of these polynomials and some relations are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized poly-Bernoulli numbers and polynomials.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 50 条
  • [31] A generating function for a class of generalized Bernoulli polynomials
    Eugenio P. Balanzario
    Jorge Sánchez-Ortiz
    The Ramanujan Journal, 2009, 19 : 9 - 18
  • [32] A generating function for a class of generalized Bernoulli polynomials
    Balanzario, Eugenio P.
    Sanchez-Ortiz, Jorge
    RAMANUJAN JOURNAL, 2009, 19 (01): : 9 - 18
  • [33] Laguerre-based Hermite-Bernoulli polynomials associated with bilateral series
    Khan, Waseem Ahmad
    Araci, Serkan
    Acikgoz, Mehmet
    Esi, Ayhan
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (02): : 111 - 121
  • [34] On a Class of Generalized Multivariate Hermite-Humbert Polynomials via Generalized Fibonacci Polynomials
    Alam, Noor
    Wani, Shahid Ahmad
    Khan, Waseem Ahmad
    Kotecha, Ketan
    Zaidi, Hasan Nihal
    Gassem, Fakhredine
    Altaleb, Anas
    SYMMETRY-BASEL, 2024, 16 (11):
  • [35] On a duality formula for certain sums of values of poly-Bernoulli polynomials and its application
    Kaneko, Masanobu
    Sakurai, Fumi
    Tsumura, Hirofumi
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (01): : 203 - 218
  • [36] On Generalized q-Poly-Bernoulli Numbers and Polynomials
    Bilgic, Secil
    Kurt, Veli
    FILOMAT, 2020, 34 (02) : 515 - 520
  • [37] New identities and relations derived from the generalized Bernoulli polynomials, Euler polynomials and Genocchi polynomials
    Veli Kurt
    Advances in Difference Equations, 2014
  • [38] Analytical properties of extended Hermite-Bernoulli polynomials
    Khan, Nabiullah
    Ahmad, Naeem
    Ghayasuddin, Mohd
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 20 (04): : 292 - 301
  • [39] A NEW CLASS OF LAGUERRE-BASED GENERALIZED HERMITE-EULER POLYNOMIALS AND ITS PROPERTIES
    Khan, N. U.
    Usman, T.
    Khan, W. A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (01): : 89 - 100
  • [40] A new class of generalized Laguerre–Euler polynomials
    Nabiullah Khan
    Talha Usman
    Junesang Choi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 861 - 873