Thermal Processing of Spent Li-Ion Batteries for Extraction of Lithium and Cobalt-Manganese Values

被引:20
|
作者
Sunil, Singh RahulKumar [1 ]
Dhawan, Nikhil [1 ]
机构
[1] IIT Roorkee, Dept Met & Mat Engn, Indian Inst Technol, Roorkee 247667, Uttarakhand, India
关键词
Recycling; Lithium-ion battery; Reduction; Manganese; Cobalt; Lithium; Magnetic separation; VALUABLE METALS; SUSTAINABLE PROCESS; CATHODE MATERIALS; RECOVERY; SEPARATION; KINETICS;
D O I
10.1007/s12666-019-01769-y
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Lithium-ion batteries have a limited lifespan and ever-growing demand, and the presence of critical metals such as lithium, cobalt and manganese are key factors for their recycling. In this study, discarded mixed mobile batteries were discharged, dismantled and separated into cathode and anode sheets followed by crushing in an attritor. The cathode material contained LiCoO2 and LiMn2O4 of around 65.8 and 34.2%, respectively, while graphite was present in the anode material. The cathode material was reduced using graphite in a muffle furnace at different residence time and dosage. A Box-Behnken statistical design was employed for optimization of reduction parameters. The reduced mass was dissolved in distilled water, and resulting leach residue was magnetically separated. The obtained magnetic fraction contained cobalt and manganese oxide, whereas graphite and lithium carbonate were found in nonmagnetic fraction and dried solution. The overall yield of the process was 74.08%, and final product composition was Co 64.2 and MnO 35.8%, respectively. Further, the product was cleaned using planetary ball milling for 10 min followed by magnetic separation cleaning to recover concentrate with 83% Co values.
引用
收藏
页码:3035 / 3044
页数:10
相关论文
共 50 条
  • [11] Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach
    Takacova, Zita
    Havlik, Tomas
    Kukurugya, Frantisek
    Orac, Dusan
    HYDROMETALLURGY, 2016, 163 : 9 - 17
  • [12] Effect of Na from the leachate of spent Li-ion batteries on the properties of resynthesized Li-ion battery cathodes
    Beak, Mincheol
    Park, Sanghyuk
    Kim, Sangjun
    Park, Jangho
    Jeong, Seongdeock
    Thirumalraj, Balamurugan
    Jeong, Goojin
    Kim, Taehyeon
    Kwon, Kyungjung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [13] Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors
    Pinna, Eliana G.
    Ruiz, M. C.
    Ojeda, Manuel W.
    Rodriguez, Mario H.
    HYDROMETALLURGY, 2017, 167 : 66 - 71
  • [14] Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries
    Diaz, Fabian
    Wang, Yufengnan
    Weyhe, Reiner
    Friedrich, Bernd
    WASTE MANAGEMENT, 2019, 84 : 102 - 111
  • [15] Selective lithium recovery from spent LFP Li-ion batteries using organic acids
    Ali, Maryam
    Iqbal, Naseem
    Noor, Tayyaba
    Zaman, Neelam
    IONICS, 2025, 31 (01) : 273 - 286
  • [16] Modeling of manganese recovery from waste Li-ion batteries by gene expression programming
    Ebrahimzade, Hossein
    Khayati, Gholam Reza
    Schaffie, Mahin
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2021, 23 (06) : 2218 - 2231
  • [17] Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries
    Ferreira, Daniel Alvarenga
    Zimmer Prados, Luisa Martins
    Majuste, Daniel
    Mansur, Marcelo Borges
    JOURNAL OF POWER SOURCES, 2009, 187 (01) : 238 - 246
  • [18] Hydrometallurgical Process to Recover Cobalt from Spent Li-Ion Batteries
    Djoudi, Neila
    Mostefa, Marie Le Page
    Muhr, Herve
    RESOURCES-BASEL, 2021, 10 (06):
  • [19] A new method to recycle Li-ion batteries with laser materials processing technology
    Chen, James
    Zhang, Ruby
    Li, Jian
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [20] Research progress on recovering the components of spent Li-ion batteries
    Gao, Shao-jun
    Liu, Wei-feng
    Fu, Dong-ju
    Liu, Xu-guang
    NEW CARBON MATERIALS, 2022, 37 (03) : 435 - 460