Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
来源
DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021) | 2021年
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Explainable AI for Time Series Classification: A Review, Taxonomy and Research Directions
    Theissler, Andreas
    Spinnato, Francesco
    Schlegel, Udo
    Guidotti, Riccardo
    IEEE ACCESS, 2022, 10 : 100700 - 100724
  • [32] A Research Agenda for AI Planning in the Field of Flexible Production Systems
    Koecher, Aljosha
    Heesch, Rene
    Widulle, Niklas
    Nordhausen, Anna
    Putzke, Julian
    Windmann, Alexander
    Niggemann, Oliver
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS, 2022,
  • [33] Quod erat demonstrandum?- Towards a typology of the concept of explanation for the design of explainable AI
    Cabitza, Federico
    Campagner, Andrea
    Malgieri, Gianclaudio
    Natali, Chiara
    Schneeberger, David
    Stoeger, Karl
    Holzinger, Andreas
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [34] Data Quality and Explainable AI
    Bertossi, Leopoldo
    Geerts, Floris
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2020, 12 (02):
  • [35] Explainable AI for the Choquet Integral
    Murray, Bryce J.
    Islam, Muhammad Aminul
    Pinar, Anthony J.
    Anderson, Derek T.
    Scott, Grant J.
    Havens, Timothy C.
    Keller, James M.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04): : 520 - 529
  • [36] Explainable AI for Gas Sensors
    Chakraborty, Sanghamitra
    Mittermaier, Simon
    Carbonelli, Cecilia
    Servadei, Lorenzo
    2022 IEEE SENSORS, 2022,
  • [37] On Explainable AI and Abductive Inference
    Medianovskyi, Kyrylo
    Pietarinen, Ahti-Veikko
    PHILOSOPHIES, 2022, 7 (02)
  • [38] Explainable AI for DeepFake Detection
    Mansoor, Nazneen
    Iliev, Alexander I.
    APPLIED SCIENCES-BASEL, 2025, 15 (02):
  • [39] Explainable AI for Financial Forecasting
    Carta, Salvatore
    Podda, Alessandro Sebastian
    Recupero, Diego Reforgiato
    Stanciu, Maria Madalina
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 51 - 69
  • [40] Explainable AI for Software Engineering
    Tantithamthavorn, Chakkrit
    Jiarpakdee, Jirayus
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 1 - 2