Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
来源
DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021) | 2021年
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Chess and explainable AI
    Bjornsson, Yngvi
    ICGA JOURNAL, 2024, 46 (02) : 67 - 75
  • [22] Logic for Explainable AI
    Darwiche, Adnan
    2023 38TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS, 2023,
  • [23] Explainable AI in Healthcare
    Pawar, Urja
    O'Shea, Donna
    Rea, Susan
    O'Reilly, Ruairi
    2020 INTERNATIONAL CONFERENCE ON CYBER SITUATIONAL AWARENESS, DATA ANALYTICS AND ASSESSMENT (CYBER SA 2020), 2020,
  • [24] Explainable AI for Bioinformatics: Methods, Tools and Applications
    Karim, Md Rezaul
    Islam, Tanhim
    Shajalal, Md
    Beyan, Oya
    Lange, Christoph
    Cochez, Michael
    Rebholz-Schuhmann, Dietrich
    Decker, Stefan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [25] Explainable AI for Predictive Analytics on Employee Attrition
    Das, Sandip
    Sayan, Chakraborty
    Sajjan, Gairik
    Majumder, Soumi
    Dey, Nilanjan
    Tavares, Joao Manuel R. S.
    SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, ICSOFTCOMP 2022, 2023, 1788 : 147 - 157
  • [26] Explainable AI analysis for smog rating prediction
    Ghadi, Yazeed Yasin
    Saqib, Sheikh Muhammad
    Mazhar, Tehseen
    Almogren, Ahmad
    Waheed, Wajahat
    Altameem, Ayman
    Hamam, Habib
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] Unveiling the factors of aesthetic preferences with explainable AI
    Soydaner, Derya
    Wagemans, Johan
    BRITISH JOURNAL OF PSYCHOLOGY, 2024,
  • [28] How to explain AI systems to end users: a systematic literature review and research agenda
    Laato, Samuli
    Tiainen, Miika
    Islam, A. K. M. Najmul
    Mantymaki, Matti
    INTERNET RESEARCH, 2022, 32 (07) : 1 - 31
  • [29] Unfolding Explainable AI for Brain Tumor Segmentation
    Hassan, Muhammad
    Fateh, Ahmed Ameen
    Lin, Jieqiong
    Zhuang, Yijiang
    Lin, Guisen
    Xiong, Hairui
    You, Zhou
    Qin, Peiwu
    Zeng, Hongwu
    NEUROCOMPUTING, 2024, 599
  • [30] An assessment framework for explainable AI with applications to cybersecurity
    Calzarossa, Maria Carla
    Giudici, Paolo
    Zieni, Rasha
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (05)