Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
来源
DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021) | 2021年
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Opportunities in Real Time Fraud Detection: An Explainable Artificial Intelligence (XAI) Research Agenda
    Mill, Eleanor
    Garn, Wolfgang
    Ryman-Tubb, Nick
    Turner, Chris
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 1172 - 1186
  • [12] Explainable AI: introducing trust and comprehensibility to AI engineering
    Burkart, Nadia
    Brajovic, Danilo
    Huber, Marco F.
    AT-AUTOMATISIERUNGSTECHNIK, 2022, 70 (09) : 787 - 792
  • [13] The Role of Human Knowledge in Explainable AI
    Tocchetti, Andrea
    Brambilla, Marco
    DATA, 2022, 7 (07)
  • [14] On the role of knowledge graphs in explainable AI
    Lecue, Freddy
    SEMANTIC WEB, 2020, 11 (01) : 41 - 51
  • [15] Explainable AI for trustworthy image analysis
    Turley, Jordan E.
    Dunne, Jeffrey A.
    Woods, Zerotti
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS V, 2023, 12538
  • [16] Defining Explainable AI for Requirements Analysis
    Sheh, Raymond
    Monteath, Isaac
    KUNSTLICHE INTELLIGENZ, 2018, 32 (04): : 261 - 266
  • [17] The challenge of Zero touch and explainable AI
    Dutta B.
    Krichel A.
    Odini M.-P.
    Journal of ICT Standardization, 2021, 9 (02): : 147 - 158
  • [18] Explainable AI for Soil Fertility Prediction
    Chandra, Harshiv
    Pawar, Pranav M.
    Elakkiya, R.
    Tamizharasan, P. S.
    Muthalagu, Raja
    Panthakkan, Alavikunhu
    IEEE ACCESS, 2023, 11 : 97866 - 97878
  • [19] Explainable Machine Learning for Trustworthy AI
    Giannotti, Fosca
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2022, 356 : 3 - 3
  • [20] Explainable AI: Foundations, Applications, Opportunities for Data Management Research
    Pradhan, Romila
    Lahiri, Aditya
    Galhotra, Sainyam
    Salimi, Babak
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 2452 - 2457