Research Agenda for Basic Explainable AI

被引:0
|
作者
Lukyanenko, Roman [1 ]
Castellanos, Arturo [2 ]
Samuel, Binny M. [3 ]
Tremblay, Monica [4 ]
Maass, Wolfgang [5 ]
机构
[1] HEC Montreal, Montreal, PQ, Canada
[2] CUNY, Baruch Coll, New York, NY 10021 USA
[3] Univ Cincinnati, Cincinnati, OH 45221 USA
[4] Coll William & Mary, Williamsburg, VA 23187 USA
[5] Saarland Univ, German Res Ctr Artificial Intelligence DFKI, Saarbrucken, Germany
来源
DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021) | 2021年
关键词
Explainable AI; machine learning; basic level categories; Basic XAI; model interpretability; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence is increasingly driven by powerful but often opaque machine learning algorithms. These black-box algorithms achieve high performance but are not explainable to humans in a systematic and interpretable manner, a challenge known as Explainable AI (XAI). Informed by a synthesis of two converging literature streams on information systems development and psychology, we propose a new XAI approach termed Basic Explainable AI and a subsequent research agenda. We propose four research directions that focus on providing explanations by proactively considering the target audience's mental models and making the explanations maximally accessible to heterogeneous nonexpert users.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] What Information is Required for Explainable AI? : A Provenance-based Research Agenda and Future Challenges
    Jaigirdar, Fariha Tasmin
    Rudolph, Carsten
    Oliver, Gillian
    Watts, David
    Bain, Chris
    2020 IEEE 6TH INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2020), 2020, : 177 - 183
  • [2] The Role of Explainable AI in the Research Field of AI Ethics
    Vainio-Pekka, Heidi
    Agbese, Mamia Ori-Otse
    Jantunen, Marianna
    Vakkuri, Ville
    Mikkonen, Tommi
    Rousi, Rebekah
    Abrahamsson, Pekka
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2023, 13 (04)
  • [3] From "Explainable AI" to "Graspable AI"
    Ghajargar, Maliheh
    Bardzell, Jeffrey
    Renner, Alison Smith
    Krogh, Peter Gall
    Hook, Kristina
    Cuartielles, David
    Boer, Laurens
    Wiberg, Mikael
    PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, TEI 2021, 2021,
  • [4] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2020,
  • [5] Explainable AI for RAMS
    Zaman, Navid
    Apostolou, Evan
    Li, Yan
    Oister, Ken
    2022 68TH ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS 2022), 2022,
  • [6] Introduction to Explainable AI
    Liao, Q. Vera
    Singh, Moninder
    Zhang, Yunfeng
    Bellamy, Rachel K. E.
    EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), 2021,
  • [7] Automated Reasoning in Explainable AI
    Marques-Silva, Joao
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2021, 339 : 4 - 4
  • [8] Rationale Discovery and Explainable AI
    Steging, Cor
    Renooij, Silja
    Verheij, Bart
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 346 : 225 - 234
  • [9] Explainable AI: The New 42?
    Goebel, Randy
    Chander, Ajay
    Holzinger, Katharina
    Lecue, Freddy
    Akata, Zeynep
    Stumpf, Simone
    Kieseberg, Peter
    Holzinger, Andreas
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2018, 2018, 11015 : 295 - 303
  • [10] Combinatorial Methods for Explainable AI
    Kuhn, D. Richard
    Kacker, Raghu N.
    Lei, Yu
    Simos, Dimitris E.
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS (ICSTW), 2020, : 167 - 170