Enzymatic proteolysis of alpha gliadin monolayer spread at the air-water interface

被引:5
|
作者
Mircheva, K. [1 ]
Ivanova, Tz [1 ]
Panaiotov, I. [1 ]
Ducel, V. [2 ]
Boury, F. [3 ]
机构
[1] Univ Sofia, Fac Chem, Dept Phys Chem, Biophys Chem Lab, Sofia 1164, Bulgaria
[2] UTC, Enzyme & Cell Engn UMR 6022, F-60205 Compiegne, France
[3] Univ Angers, INSERM Ingn Vectorisat Particulaire, U646, F-49100 Angers, France
关键词
Monolayers; Hydrolysis; Alpha gliadin; EMULSIFYING PROPERTIES; PROTEIN ISOLATE; WHEAT PROTEINS; HYDROLYSIS; FILMS; GLOBULIN; BEHAVIOR; DISPLACEMENT; KINETICS; ALBUMIN;
D O I
10.1016/j.jcis.2010.03.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism of the enzymatic hydrolysis under the proteolytic enzyme action of a plant protein alpha gliadin organized as a model monolayer system at the air/water interface was studied. The advantage of the monolayer technique is the ability to control and modify easily the interfacial organization of the molecules and the possibility to optimize the conditions for the hydrolysis. Enzymatic hydrolysis was studied by using a traditional barostat surface balance. The hydrolysis kinetic was followed by measuring simultaneously the decrease of the surface area and change of the surface potential with time. The decrease with time in film area is result of the random scission of the peptide bonds of polypeptide chain and their solubilization in the aqueous subphase. The interpretation of the surface potential data is based on the contribution of the dipole moments of the intact and broken peptide groups. An appropriate kinetic model describing the proteolytic action of a peptidase was applied and the global kinetic constant was obtained. The random scission of the protein chains gave kinetic constants comparable with those measured during the hydrolytic scission of polyester macromolecules but quite different to the values obtained with short-chain lipids. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 73
页数:5
相关论文
共 50 条
  • [21] Interaction of DPPC monolayer at air-water interface with hydrophobic ions
    Shapovalov, V.L.
    Thin Solid Films, 1998, 327-329 : 599 - 602
  • [23] Role of protein unfolding in monolayer formation on air-water interface
    Tronin, A
    Dubrovsky, T
    Dubrovskaya, S
    Radicchi, G
    Nicolini, C
    LANGMUIR, 1996, 12 (13) : 3272 - 3275
  • [24] The sequential growth mechanism of a protein monolayer at the air-water interface
    Singh, Amarjeet
    Konovalov, Oleg
    Novak, Jiri
    Vorobiev, Alexei
    SOFT MATTER, 2010, 6 (16) : 3826 - 3831
  • [25] Behavior and state of mixed Langmuir monolayer at air-water interface
    Xie, D.
    Jiang, Y.D.
    Wu, Z.M.
    Li, Y.R.
    Proceedings - International Symposium on Electrets, 1999, : 201 - 204
  • [26] Incorporation of β-lactoglobulin in a lipid/porphyrin monolayer at the air-water interface
    da Silva, AMG
    Romao, RS
    Costa, SMB
    CHEMISTRY AND PHYSICS OF LIPIDS, 2004, 127 (01) : 77 - 90
  • [27] Structure of the porphyrazine monolayer at the air-water interface: Computer simulation
    Borodin, A
    Kiselev, M
    PURE AND APPLIED CHEMISTRY, 2004, 76 (01) : 197 - 202
  • [28] Interaction of DPPC monolayer at air-water interface with hydrophobic ions
    Shapovalov, VL
    THIN SOLID FILMS, 1998, 327 : 599 - 602
  • [29] Monolayer and multilayer of a liquid crystal copolysiloxane at the air-water interface
    Mu, J
    Okamoto, H
    Takenaka, S
    Feng, XS
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2000, 172 (1-3) : 87 - 90
  • [30] Nonlinear mechanical behaviors of a nanoparticle monolayer at the air-water interface
    Yongjian Zhang
    Jiaqi Si
    Qirui Cui
    Gengtao Wang
    Yujie Bai
    The European Physical Journal E, 2018, 41