Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3, 32h+1)

被引:26
作者
Ding, Cunsheng [1 ]
Wang, Zeying
Xiang, Qing
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
difference set; Gauss sum; permutation polynomial; Ree-Tits slice spread; skew Hadamard difference set; symplectic spread; twin prime power difference set;
D O I
10.1016/j.jcta.2006.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a class of permutation polynomials of F32h+1 obtained from the Ree-Tits slice symplectic spreads in PG(3, 3(2h+1)), we construct a family of skew Hadamard difference sets in the additive group of F32h+ 1. With the help of a computer, we show that these skew Hadamard difference sets are new when h = 2 and h = 3. We conjecture that they are always new when It > 3. Furthermore, we present a variation of the classical construction of the twin prime power difference sets, and show that inequivalent skew Hadamard difference sets lead to inequivalent difference sets with twin prime power parameters. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:867 / 887
页数:21
相关论文
共 20 条
[1]  
[Anonymous], 1997, ENCY MATH APPL
[2]  
Ball S, 2004, LECT NOTES COMPUT SC, V2948, P79
[3]  
Baumert L.D., 1971, CYCLIC DIFFERENCE SE
[4]  
Berndt B.C., 1998, GAUSS JACOBI SUMS
[5]  
Beth Th., 1999, ENCY MATH APPL, V78
[6]  
CAMION P, 1972, J NUMBER THEORY, V4, P266
[7]  
CANNON J, 1993, INTRO MAGMA
[8]  
CHEN YQ, 1994, DESIGN CODE CRYPTOGR, V4, P313
[9]   A family of skew Hadamard difference sets [J].
Ding, Cunsheng ;
Yuan, Jin .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1526-1535
[10]  
HIRSCHFELD JWP, 1985, OXFORD MATH MONOGR