Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data

被引:352
|
作者
Daducci, Alessandro [1 ,2 ,3 ]
Canales-Rodriguez, Erick J. [4 ,5 ]
Zhang, Hui [7 ,8 ]
Dyrby, Tim B. [6 ]
Alexander, Daniel C. [7 ,8 ]
Thiran, Jean-Philippe [1 ,2 ,3 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, CH-1015 Lausanne, Switzerland
[2] Univ Hosp Ctr CHUV, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Lausanne, Switzerland
[4] FIDMAG Germanes Hosp, Barcelona, Spain
[5] CIBERSAM, Ctr Invest Biomed Red Salud Mental, Barcelona, Spain
[6] Univ Copenhagen, Hvidovre Hosp, Ctr Funct & Diagnost Imaging & Res, Danish Res Ctr Magnet Resonance, DK-1168 Copenhagen, Denmark
[7] UCL, Dept Comp Sci, London WC1E 6BT, England
[8] UCL, Ctr Med Image Comp, London WC1E 6BT, England
关键词
Diffusion MRI; Microstructure imaging; Convex optimization; WHITE-MATTER; CROSSING FIBERS; AXON DIAMETER; WATER DIFFUSION; MODEL; BALL; RECONSTRUCTION; RESOLUTION; DECONVOLUTION; DENSITY;
D O I
10.1016/j.neuroimage.2014.10.026
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. (C) 2014 The Authors. Published by Elsevier Inc.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 50 条
  • [1] ACCELERATED MICROSTRUCTURE IMAGING VIA CONVEX OPTIMISATION FOR REGIONS WITH MULTIPLE FIBRES (AMICOX)
    Auria, A.
    Romascano, D.
    Canales-Rodriguez, E.
    Wiau, Y.
    Dirby, T. B.
    Alexander, D.
    Thiran, J. P.
    Daducci, A.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1673 - 1676
  • [2] Imaging brain microstructure with diffusion MRI: practicality and applications
    Alexander, Daniel C.
    Dyrby, Tim B.
    Nilsson, Markus
    Zhang, Hui
    NMR IN BIOMEDICINE, 2019, 32 (04)
  • [3] Robust and fast nonlinear optimization of diffusion MRI microstructure models
    Harms, R. L.
    Fritz, F. J.
    Tobisch, A.
    Goebel, R.
    Roebroeck, A.
    NEUROIMAGE, 2017, 155 : 82 - 96
  • [4] Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging
    Tobisch, Alexandra
    Stirnberg, Ruediger
    Harms, Robbert L.
    Schultz, Thomas
    Roebroeck, Alard
    Breteler, Monique M. B.
    Stoecker, Tony
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [5] Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison
    Ferizi, Uran
    Scherrer, Benoit
    Schneider, Torben
    Alipoor, Mohammad
    Eufracio, Odin
    Fick, Rutger H. J.
    Deriche, Rachid
    Nilsson, Markus
    Loya-Olivas, Ana K.
    Rivera, Mariano
    Poot, Dirk H. J.
    Ramirez-Manzanares, Alonso
    Marroquin, Jose L.
    Rokem, Ariel
    Potter, Christian
    Dougherty, Robert F.
    Sakaie, Ken
    Wheeler-Kingshott, Claudia
    Warfield, Simon K.
    Witzel, Thomas
    Wald, Lawrence L.
    Raya, Jose G.
    Alexander, Daniel C.
    NMR IN BIOMEDICINE, 2017, 30 (09)
  • [6] A data-driven approach to optimising the encoding for multi-shell diffusion MRI with application to neonatal imaging
    Tournier, Jacques-Donald
    Christiaens, Daan
    Hutter, Jana
    Price, Anthony N.
    Cordero-Grande, Lucilio
    Hughes, Emer
    Bastiani, Matteo
    Sotiropoulos, Stamatios N.
    Smith, Stephen M.
    Rueckert, Daniel
    Counsell, Serena J.
    Edwards, A. David
    Hajnal, Joseph V.
    NMR IN BIOMEDICINE, 2020, 33 (09)
  • [7] Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
    Farooq, Hamza
    Xu, Junqian
    Nam, Jung Who
    Keefe, Daniel F.
    Yacoub, Essa
    Georgiou, Tryphon
    Lenglet, Christophe
    SCIENTIFIC REPORTS, 2016, 6
  • [8] Diffusion MRI signal cumulants and hepatocyte microstructure at fixed diffusion time: Insights from simulations, 9.4T imaging, and histology
    Grussu, Francesco
    Bernatowicz, Kinga
    Casanova-Salas, Irene
    Castro, Natalia
    Nuciforo, Paolo
    Mateo, Joaquin
    Barba, Ignasi
    Perez-Lopez, Raquel
    MAGNETIC RESONANCE IN MEDICINE, 2022, 88 (01) : 365 - 379
  • [9] Accelerated, Physics-Inspired Inference of Skeletal Muscle Microstructure From Diffusion-Weighted MRI
    Naughton, Noel
    Cahoon, Stacey M.
    Sutton, Bradley P.
    Georgiadis, John G.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (11) : 3698 - 3709
  • [10] Placenta microstructure and microcirculation imaging with diffusion MRI
    Slator, Paddy J.
    Hutter, Jana
    McCabe, Laura
    Gomes, Ana Dos Santos
    Price, Anthony N.
    Panagiotaki, Eleftheria
    Rutherford, Mary A.
    Hajnal, Joseph V.
    Alexander, Daniel C.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (02) : 756 - 766