Biosensing characteristics of InAs nanowire transistors grown by MOCVD

被引:1
|
作者
Kim, Doo Gun [1 ]
Hwang, Jeongwoo [1 ]
Kim, Seon Hoon [1 ]
Ki, Hyun Chul [1 ]
Kim, Tae Un [1 ]
Shin, Jae Cheol [2 ]
Choi, Young Wan [3 ]
机构
[1] Korea Photon Technol Inst, Laser Res Ctr, Gwangju 61007, South Korea
[2] Yeungnam Univ, Dept Phys, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[3] Chung Ang Univ, Sch Elect & Elect Engn, 84 Heukseok Ro, Seoul 06974, South Korea
来源
QUANTUM DOTS AND NANOSTRUCTURES: GROWTH, CHARACTERIZATION, AND MODELING XIV | 2017年 / 10114卷
关键词
Nanowires; Field effect transistor; MOCVD; Biosensor; InAs; SILICON;
D O I
10.1117/12.2253637
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrated the ion-sensitive field-effect transistors (IS-FETs) based on nanowires (NWs) with different diameters and doping concentrations to obtain the high sensitivity and various applications. The growth of the catalyst-free InAs NWs was carried out using a horizontal reactor MOCVD system (AIXTRON Inc.). A p-type Si (111) wafer (rho = 1 - 10 Omega-cm) was prepared for the NW growth. Here, NWs with diameters of around 50 similar to 150 nm were grown and the doping concentration also was changed around x +/- 10(16 similar to 18)/cm(2). IS-FETs with the grown InAs NWs were fabricated using the photolithography and the lift-off process. The gas sensing characteristics have been investigated through studying the gate response of the NW conductance in different ambient conditions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors
    Ullah, A. R.
    Joyce, H. J.
    Burke, A. M.
    Wong-Leung, J.
    Tan, H. H.
    Jagadish, C.
    Micolich, A. P.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (10): : 911 - 914
  • [22] High electron mobility InAs nanowire field-effect transistors
    Dayeh, Shadi A.
    Aplin, David P. R.
    Zhou, Xiaotian
    Yu, Paul K. L.
    Yu, Edward T.
    Wang, Deli
    SMALL, 2007, 3 (02) : 326 - 332
  • [23] InAs Nanowire Transistors with Multiple, Independent Wrap-Gate Segments
    Burke, A. M.
    Carrad, D. J.
    Gluschke, J. G.
    Storm, K.
    Svensson, S. Fahlvik
    Linke, H.
    Samuelson, L.
    Micolich, A. P.
    NANO LETTERS, 2015, 15 (05) : 2836 - 2843
  • [24] Evaluation of lateral diffusion length in InAs/GaSb superlattice detectors grown by MOCVD
    Teng, Yan
    Hao, Xiujun
    Zhao, Yu
    Wu, Qihua
    Li, Xin
    Liu, Jiafeng
    Zhu, He
    Chen, Ying
    Zhu, Hong
    Huang, Yong
    ELECTRONICS LETTERS, 2020, 56 (15) : 785 - +
  • [25] Optical Properties of Short-Period InAs/GaSb Superlattices Grown by MOCVD
    L. V. Danilov
    R. V. Levin
    V. N. Nevedomskyi
    B. V. Pushnyi
    Semiconductors, 2019, 53 : 2078 - 2081
  • [26] Optical Properties of Short-Period InAs/GaSb Superlattices Grown by MOCVD
    Danilov, L. V.
    Levin, R. V.
    Nevedomskyi, V. N.
    Pushnyi, B. V.
    SEMICONDUCTORS, 2019, 53 (16) : 2078 - 2081
  • [27] Doping Profiles in Ultrathin Vertical VLS-Grown InAs Nanowire MOSFETs with High Performance
    Jonsson, Adam
    Svensson, Johannes
    Fiordaliso, Elisabetta Maria
    Lind, Erik
    Hellenbrand, Markus
    Wernersson, Lars-Erik
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (12) : 5240 - 5247
  • [28] Preparation of epi-ready InAs substrate surface for InAs/GaSb superlattice infrared detectors grown by MOCVD
    Liu Li-Jie
    Zhao You-Wen
    Huang Yong
    Zhao Yu
    Wang Jun
    Wang Ying-Li
    Shen Gui-Ying
    Xie Hui
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (02) : 420 - 424
  • [29] Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates
    Anufriev, Roman
    Chauvin, Nicolas
    Khmissi, Hammadi
    Naji, Khalid
    Patriarche, Gilles
    Gendry, Michel
    Bru-Chevallier, Catherine
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (10): : 878 - 881
  • [30] The Scaling-Down and Performance Optimization of InAs Nanowire Field Effect Transistors
    Chen, Q.
    Yang, W.
    SIGE, GE, AND RELATED COMPOUNDS: MATERIALS, PROCESSING, AND DEVICES 8, 2018, 86 (07): : 41 - 49