Optimal transport from a point-like source

被引:1
作者
Cardin, Franco [1 ]
Banavar, Jayanth R. [2 ]
Maritan, Amos [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
[3] Univ Padua, Ist Nazl Fis Nucl, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
关键词
Monge-Kantorovich; Metabolic scaling; Fermat principle; POLAR FACTORIZATION; PHYSARUM; NETWORK;
D O I
10.1007/s00161-019-00844-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
We present a dynamical interpretation of the Monge-Kantorovich theory in a stationary regime. This new principle, akin to the Fermat principle of geometric optics, captures the geodesic character of many distribution networks such as plant roots, river basins and the physiological transportation network of metabolites in living systems. Our general continuum framework allows us to map a previously proposed phenomenological principle into a stationary Monge optimization principle in the Kantorovich relaxed format.
引用
收藏
页码:1325 / 1335
页数:11
相关论文
共 28 条
[1]  
Ambrosio L, 2003, LECT NOTES MATH, V1813, P123
[2]  
Ambrosio L, 2003, LECT NOTES MATH, V1812, P1
[3]   Size and form in efficient transportation networks [J].
Banavar, JR ;
Maritan, A ;
Rinaldo, A .
NATURE, 1999, 399 (6732) :130-132
[4]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[5]   Physarum can compute shortest paths [J].
Bonifaci, Vincenzo ;
Mehlhorn, Kurt ;
Varma, Girish .
JOURNAL OF THEORETICAL BIOLOGY, 2012, 309 :121-133
[7]  
Brenier Y, 2003, LECT NOTES MATH, V1813, P91
[8]   Evolution Models for Mass Transportation Problems [J].
Buttazzo, Giuseppe .
MILAN JOURNAL OF MATHEMATICS, 2012, 80 (01) :47-63
[9]   Re-examination of the '"3/4-law" of metabolism [J].
Dodds, PS ;
Rothman, DH ;
Weitz, JS .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 209 (01) :9-27
[10]   Allometric scaling in animals and plants [J].
Dreyer, O ;
Puzio, R .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 43 (02) :144-156