共 12 条
Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability
被引:101
|作者:
Sharma, Deepak
Perisic, Ognjen
Peng, Qing
Cao, Yi
Lam, Canaan
Lu, Hui
Li, Hongbin
[1
]
机构:
[1] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
来源:
关键词:
atomic force microscopy;
computational design;
mechanical unfolding;
unfolding pathway;
D O I:
10.1073/pnas.0700351104
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
It is recognized that shear topology of two directly connected force-bearing terminal beta-strands is a common feature among the vast majority of mechanically stable proteins known so far. However, these proteins belong to only two distinct protein folds, Ig-like beta sandwich fold and beta-grasp fold, significantly hindering delineating molecular determinants of mechanical stability and rational tuning of mechanical properties. Here we combine single-molecule atomic force microscopy and steered molecular dynamics simulation to reveal that the de novo designed Top? fold [Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Science 302:1364-1368] represents a mechanically stable protein fold that is distinct from Ig-like beta sandwich and beta-grasp folds. Although the two force-bearing beta strands of Top? are not directly connected, Top7 displays significant mechanical stability, demonstrating that the direct connectivity of force-bearing beta strands in shear topology is not mandatory for mechanical stability. This finding broadens our understanding of the design of mechanically stable proteins and expands the protein fold space where mechanically stable proteins can be screened. Moreover, our results revealed a substructure-sliding mechanism for the mechanical unfolding of Top7 and the existence of two possible unfolding pathways with different height of energy barrier. Such insights enabled us to rationally tune the mechanical stability of Top7 by redesigning its mechanical unfolding pathway. Our study demonstrates that computational biology methods (including de novo design) offer great potential for designing proteins of defined topology to achieve significant and tunable mechanical properties in a rational and systematic fashion.
引用
收藏
页码:9278 / 9283
页数:6
相关论文