Nonuniformly elliptic energy integrals with p, q-growth

被引:33
|
作者
Cupini, Giovanni [1 ]
Marcellini, Paolo [2 ]
Mascolo, Elvira [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Nonuniformly elliptic equations; p; q-growth conditions; Local boundedness; REGULARITY; MINIMIZERS; CONTINUITY;
D O I
10.1016/j.na.2018.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local boundedness of minimizers of a nonuniformly energy integral of the form integral(Omega) f (x, Dv) dx under p, q-growth conditions of the type lambda(x)vertical bar xi vertical bar(p) <= f(x, xi) <= mu(x) (1+vertical bar xi vertical bar(q)) for some exponents q >= p > 1 and with nonnegative functions lambda,mu it satisfying some summability conditions. We use here the original notation introduced in 1971 by Trudinger [26], where lambda(x) and mu(x) had the role of the minimum and the maximum eigenvalues of an n x n symmetric matrix (a(ij) (x)) and f (x, xi) = Sigma(n)(i,j=1) a(ij) (x) xi(i)xi(j) was the energy integrand associated to a linear nonuniformly elliptic equation in divergence form. In this paper we consider a class of energy integrals, associated to nonlinear nonuniformly elliptic equations and systems, with integrands f (x, xi) satisfying the general growth conditions above. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:312 / 324
页数:13
相关论文
共 50 条
  • [1] Lipschitz regularity for degenerate elliptic integrals with p, q-growth
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    di Napoli, Antonia Passarelli
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, : 443 - 465
  • [2] Regularity for Nonuniformly Elliptic Equations with p,q-Growth and Explicit x,u-Dependence
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [3] Boundary regularity for elliptic systems with p, q-growth
    Boegelein, Verena
    Duzaar, Frank
    Marcellini, Paolo
    Scheven, Christoph
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 159 : 250 - 293
  • [4] LOCAL REGULARITY FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH
    Cupini, Giovanni
    Mascolo, Elvira
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2015, 1 : 15 - 38
  • [5] EXISTENCE OF WEAK SOLUTIONS FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH
    Cupini, Giovanni
    Leonetti, Francesco
    Mascolo, Elvira
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (02) : 645 - 658
  • [6] EXISTENCE AND REGULARITY FOR ELLIPTIC EQUATIONS UNDER p,q-GROWTH
    Cupini, Giovanni
    Marcellini, Paolo
    Mascolo, Elvira
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (7-8) : 693 - 724
  • [7] REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS
    MARCELLINI, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) : 1 - 30
  • [8] Parabolic equations with p, q-growth
    Boegelein, Verena
    Duzaar, Frank
    Marcellini, Paolo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04): : 535 - 563
  • [9] WEAK DIFFERENTIABILITY FOR SOLUTIONS TO NONLINEAR ELLIPTIC-SYSTEMS WITH P, Q-GROWTH CONDITIONS
    LEONETTI, F
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 162 : 349 - 366
  • [10] Symmetrization results for classes of nonlinear elliptic equations with q-growth in the gradient
    Messano, B
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) : 2688 - 2703