Nonuniformly elliptic energy integrals with p, q-growth

被引:34
作者
Cupini, Giovanni [1 ]
Marcellini, Paolo [2 ]
Mascolo, Elvira [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Nonuniformly elliptic equations; p; q-growth conditions; Local boundedness; REGULARITY; MINIMIZERS; CONTINUITY;
D O I
10.1016/j.na.2018.03.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local boundedness of minimizers of a nonuniformly energy integral of the form integral(Omega) f (x, Dv) dx under p, q-growth conditions of the type lambda(x)vertical bar xi vertical bar(p) <= f(x, xi) <= mu(x) (1+vertical bar xi vertical bar(q)) for some exponents q >= p > 1 and with nonnegative functions lambda,mu it satisfying some summability conditions. We use here the original notation introduced in 1971 by Trudinger [26], where lambda(x) and mu(x) had the role of the minimum and the maximum eigenvalues of an n x n symmetric matrix (a(ij) (x)) and f (x, xi) = Sigma(n)(i,j=1) a(ij) (x) xi(i)xi(j) was the energy integrand associated to a linear nonuniformly elliptic equation in divergence form. In this paper we consider a class of energy integrals, associated to nonlinear nonuniformly elliptic equations and systems, with integrands f (x, xi) satisfying the general growth conditions above. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:312 / 324
页数:13
相关论文
共 27 条
[1]  
[Anonymous], 2002, Atti Sem. Mat. Fis. Univ. Modena
[2]  
[Anonymous], 1978, Applicable Anal., DOI [DOI 10.1080/00036817808839219, 10.1080/00036817808839219]
[3]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[4]  
[Anonymous], J MATH PURES APPL
[5]  
[Anonymous], 1968, Boll. Unione Mat. Ital.
[6]  
[Anonymous], 1968, BOLL UMI
[7]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[8]  
Carozza M, 2014, ANN SCUOLA NORM-SCI, V13, P1065
[9]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[10]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496