Quasi-Static Displacement Self-Sensing Measurement for a 2-DOF Piezoelectric Cantilevered Actuator

被引:28
作者
Ivan, Ioan Alexandru [1 ,2 ,3 ]
Aljanaideh, Omar [1 ,4 ]
Agnus, Joel [5 ]
Lutz, Philippe [1 ]
Rakotondrabe, Micky [1 ]
机构
[1] Univ Burgundy Franche Comte, FEMTO ST Inst, Automat & MicroMechatron Syst Dept, F-25030 Besancon, France
[2] LTDS Lab, F-69134 Ecully, France
[3] ENISE Univ, F-42100 St Etienne, France
[4] Univ Washington, Elect Engn Dept, Seattle, WA 98195 USA
[5] Ecole Natl Super Mecan & Microtech, FEMTO ST Inst, Automat & MicroMechatron Syst Dept, F-25000 Besancon, France
关键词
Actuator; measurement; piezoelectric self-sensing; two degrees of freedom (2-DOF); ADAPTIVE-CONTROL;
D O I
10.1109/TIE.2017.2677304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a self-sensing measurement technique to perform the precise estimation of the displacements along two axes in a two-degrees-of-freedom (2-DOF) piezoelectric actuator. For that, a new electrical circuit scheme that permits charge amplification is first proposed to match the different electrodes combination of the 2-DOF actuator. Then, a new bivariable observer that precisely estimates the displacements is calculated and implemented experimentally in a cascade with the electrical circuit to complete the self-sensing. The experimental tests and results verification with external sensors revealed that the measured displacements given by the developed self-sensing measurement technique derive better than a micron of precision which well fits to micromanipulation applications. Discussion about the features and the performances improvement perspectives of the suggested approach are presented at the end of the paper.
引用
收藏
页码:6330 / 6337
页数:8
相关论文
共 31 条
  • [1] Robotic microassembly and micromanipulation at FEMTO-ST
    Agnus J.
    Chaillet N.
    Clévy C.
    Dembélé S.
    Gauthier M.
    Haddab Y.
    Laurent G.
    Lutz P.
    Piat N.
    Rabenorosoa K.
    Rakotondrabe M.
    Tamadazte B.
    [J]. Lutz, P. (philippe.lutz@femto-st.fr), 1600, Springer Verlag (08): : 91 - 106
  • [2] Ballas RG, 2007, MICROTECHNOL MEMS, P1, DOI 10.1007/978-3-540-32642-7
  • [3] Chaillet N., 2004, Patent No. [WO 2004028756 A3, 2004028756]
  • [4] Clévy C, 2011, SIGNAL MEASUREMENT AND ESTIMATION TECHNIQUES FOR MICRO AND NANOTECHNOLOGY, P1, DOI 10.1007/978-1-4419-9946-7_1
  • [5] Dosch J. J., 1992, Journal of Intelligent Material Systems and Structures, V3, P166, DOI 10.1177/1045389X9200300109
  • [6] Backstepping-based robust-adaptive control of a nonlinear 2-DOF piezoactuator
    Escareno, Juan-Antonio
    Rakotondrabe, Micky
    Habineza, Didace
    [J]. CONTROL ENGINEERING PRACTICE, 2015, 41 : 57 - 71
  • [7] Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners
    Fleming, AJ
    Moheimani, SOR
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2006, 14 (01) : 33 - 44
  • [8] Characterization and modeling of the temperature effect on the piezoelectric tube actuator
    Habineza, Didace
    Zouari, Mahmoud
    Hammouche, Mounir
    Le Gorrec, Yann
    Rakotondrabe, Micky
    [J]. IFAC PAPERSONLINE, 2016, 49 (21): : 354 - 360
  • [9] High-precision positioning using a self-sensing piezoelectric actuator control with a differential detection method
    Ikeda, Hideyuki
    Morita, Takeshi
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2011, 170 (1-2) : 147 - 155
  • [10] Ivan A., 2009, REV SCI INSTRUM, V80