On Dynamics of Triangular Maps of the Square with Zero Topological Entropy

被引:0
作者
Pravec, Vojtech [1 ]
机构
[1] Silesian Univ, Math Inst Opava, Opava, Czech Republic
关键词
Triangular maps; Topological entropy; Topological sequence entropy; LY-scrambled triple; 54H20; 37B40; 37O45; CHAOS;
D O I
10.1007/s12346-018-00311-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that, for interval maps, zero topological entropy is equivalent with bounded topological sequence entropy as well as with the non-existence of Li-Yorke scrambled triples. In this paper we answer the question how the situation changes when triangular maps of the unit square are concerned instead of interval maps.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 14 条
[1]  
Block L. S., 1992, DYNAMICS ONE DIMENSI
[3]   Topological sequence entropy of interval maps [J].
Cánovas, JS .
NONLINEARITY, 2004, 17 (01) :49-56
[4]  
de Melo W., 2012, ONE DIMENSIONAL DYNA
[5]   Embedding Toeplitz systems in triangular maps: The last but one problem of the Sharkovsky classification program [J].
Downarowicz, T. ;
Stefankova, M. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (12) :1566-1572
[6]  
Downarowicz T., 2011, Entropy in Dynamical Systems
[7]   Minimal subsystems of triangular maps of type 2∞; Conclusion of the Sharkovsky classification program [J].
Downarowicz, Tomasz .
CHAOS SOLITONS & FRACTALS, 2013, 49 :61-71
[8]  
GOODMAN TNT, 1974, P LOND MATH SOC, V29, P331
[9]   Stable sets and mean Li-Yorke chaos in positive entropy systems [J].
Huang, Wen ;
Li, Jian ;
Ye, Xiangdong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (06) :3377-3394
[10]  
Kocen Z., 1999, ANN MATH SIL, V13, P181