Multimodal image registration of ex vivo 4 Tesla MRI with whole mount histology for prostate cancer detection

被引:8
作者
Chappelow, Jonathan [1 ]
Madabhushi, Anant [1 ]
Rosen, Mark [2 ]
Tomaszeweski, John [3 ]
Feldman, Michael [3 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, 599 Taylor Rd, Piscataway, NJ 08854 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Pathol, Philadelphia, PA 19104 USA
来源
MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3 | 2007年 / 6512卷
关键词
registration; prostate cancer; CAD; dimensionality reduction; mutual information; COFEMI; histology; MRI; multimodality; evaluation; LLE;
D O I
10.1117/12.710558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present novel methods for registration and subsequent evaluation of whole mount prostate histological sections to corresponding 4 Tesla ex vivo magnetic resonance imaging (MRI) slices to complement our existing computer-aided diagnosis (CAD) system for detection of prostatic adenocarcinoma from high resolution MRI. The CAD system is trained using voxels labeled as cancer on MRI by experts who visually aligned histology with MRI. To address voxel labeling errors on account of manual alignment and delineation, we have developed a registration method called combined feature ensemble mutual information (COFEMI) to automatically map spatial extent of prostate cancer from histology onto corresponding MRI for prostatectomy specimens. Our method improves over intensity-based similarity metrics (mutual information) by incorporating unique information from feature spaces that are relatively robust to intensity artifacts and which accentuate the structural details in the target and template images to be registered. Our registration algorithm accounts for linear gland deformations in the histological sections resulting from gland fixing and serial sectioning. Following automatic registration of MRI and histology, cancer extent from histological sections are mapped to the corresponding registered MRI slices. The manually delineated cancer areas on MRI obtained via manual alignment of histological sections and MRI are compared with corresponding cancer extent obtained via COFEMI by a novel registration evaluation technique based on use of non-linear dimensionality reduction (locally linear embedding (LLE)). The cancer map on MRI determined by COFEMI was found to be significantly more accurate compared to the manually determined cancer mask. The performance of COFEMI was also found to be superior compared to image intensity-based mutual information registration.
引用
收藏
页数:12
相关论文
共 50 条
[42]   MIC-CUSP: Multimodal Image Correlations for Ultrasound-Based Prostate Cancer Detection [J].
Bhattacharya, Indrani ;
Vesal, Sulaiman ;
Jahanandish, Hassan ;
Choi, Moonhyung ;
Zhou, Steve ;
Kornberg, Zachary ;
Sommer, Elijah ;
Fan, Richard ;
Brooks, James ;
Sonn, Geoffrey ;
Rusu, Mirabela .
SIMPLIFYING MEDICAL ULTRASOUND, ASMUS 2023, 2023, 14337 :121-131
[43]   TRUS-MRI image registration: a paradigm shift in the diagnosis of significant prostate cancer [J].
Cornud, F. ;
Brolis, L. ;
Delongchamps, N. Barry ;
Portalez, D. ;
Malavaud, B. ;
Renard-Penna, R. ;
Mozer, P. .
ABDOMINAL IMAGING, 2013, 38 (06) :1447-1463
[44]   Image registration for interventional MRI-guided minimally invasive treatment of prostate cancer [J].
Fei, BW ;
Boll, DT ;
Duerk, JL ;
Wilson, DL .
SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, :1185-1185
[45]   Deep Learning-based Anatomy-Aware Morph Model for Registration of Prostate Whole-Mount Histopathology to MRI [J].
Zabihollahy, Fatemeh ;
Wu, Holden H. ;
Sisk, Anthony E. ;
Reiter, Robert E. ;
Raman, Steven S. ;
Fleshner, Neil E. ;
Yousef, George M. ;
Sung, Kyunghyun .
RADIOLOGY-IMAGING CANCER, 2025, 7 (03)
[46]   Initial Measurements on Whole Human Prostate ex vivo with a Tactile Resonance Sensor in Order to Detect Prostate Cancer [J].
Astrand, Anders P. ;
Andersson, Britt M. ;
Jalkanen, Ville ;
Lindahl, Olof A. .
16TH NORDIC-BALTIC CONFERENCE ON BIOMEDICAL ENGINEERING, 2015, 48 :120-123
[47]   Precision of MRI/ultrasound-fusion biopsy in prostate cancer diagnosis: an ex vivo comparison of alternative biopsy techniques on prostate phantoms [J].
Westhoff, N. ;
Siegel, F. P. ;
Hausmann, D. ;
Polednik, M. ;
von Hardenberg, J. ;
Michel, M. S. ;
Ritter, M. .
WORLD JOURNAL OF UROLOGY, 2017, 35 (07) :1015-1022
[48]   Targeting prostate lesions on multiparametric MRI with HDR brachytherapy: Optimal planning margins determined using whole-mount digital histology [J].
Smith, Christopher W. ;
Marcus, Taylor ;
Hoover, Douglas ;
Surry, Kathleen ;
D'Souza, David ;
Cool, Derek ;
Kassam, Zahra ;
Bastian-Jordan, Matthew ;
Gomez, Jose A. ;
Moussa, Madeleine ;
Chin, Joseph L. ;
Pautler, Stephen ;
Bauman, Glenn S. ;
Ward, Aaron D. .
BRACHYTHERAPY, 2022, 21 (04) :435-441
[49]   IMPROD biparametric MRI in men with a clinical suspicion of prostate cancer (IMPROD Trial): Sensitivity for prostate cancer detection in correlation with whole-mount prostatectomy sections and implications for focal therapy [J].
Merisaari, Harri ;
Jambor, Ivan ;
Ettala, Otto ;
Bostrom, Peter J. ;
Perez, Ileana Montoya ;
Verho, Janne ;
Kiviniemi, Aida ;
Syvanen, Kari ;
Kahkonen, Esa ;
Eklund, Lauri ;
Pahikkala, Tapio ;
Vainio, Paula ;
Saunavaara, Jani ;
Aronen, Hannu J. ;
Taimen, Pekka .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (05) :1641-1650
[50]   Superior detection of significant prostate cancer by transperineal prostate biopsy using MRI-transrectal ultrasound fusion image guidance over cognitive registration [J].
Ito, Masaya ;
Yonese, Ichiro ;
Toide, Masahiro ;
Ikuta, Shuzo ;
Kobayashi, Shuichiro ;
Koga, Fumitaka .
INTERNATIONAL JOURNAL OF CLINICAL ONCOLOGY, 2023, 28 (11) :1545-1553