Linear regression and the normality assumption

被引:373
作者
Schmidt, Amand F. [1 ,2 ,3 ]
Finan, Chris [1 ]
机构
[1] UCL, Inst Cardiovasc Sci, Fac Populat Hlth, London WC1E 6BT, England
[2] Univ Groningen, Groningen Res Inst Pharm, Groningen, Netherlands
[3] Univ Med Ctr Utrecht, Div Heart & Lungs, Dept Cardiol, Utrecht, Netherlands
关键词
Epidemiological methods; Bias; Linear regression; Modeling assumptions; Statistical inference; Big data;
D O I
10.1016/j.jclinepi.2017.12.006
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Study Design and Setting: Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Results: Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Conclusion: Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 13 条
[1]  
Aitken A.C., 1936, Proc. r. Soc. Edinb., V55, P42, DOI [10.1017/S0370164600014346, DOI 10.1017/S0370164600014346]
[2]  
[Anonymous], 2006, Journal of Statistical Software, DOI [10.18637/jss.v016.i09, DOI 10.18637/JSS.V016.I09]
[3]   The number of subjects per variable required in linear regression analyses [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2015, 68 (06) :627-636
[4]   A Tutorial on Methods to Estimating Clinically and Policy-Meaningful Measures of Treatment Effects in Prospective Observational Studies: A Review [J].
Austin, Peter C. ;
Laupacis, Andreas .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2011, 7 (01)
[5]   MODEL UNCERTAINTY, DATA MINING AND STATISTICAL-INFERENCE [J].
CHATFIELD, C .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1995, 158 :419-466
[6]   Effect of Metformin on Metabolites and Relation With Myocardial Infarct Size and Left Ventricular Ejection Fraction After Myocardial Infarction [J].
Eppinga, Ruben N. ;
Kofink, Daniel ;
Dullaart, Robin P. F. ;
Dalmeijer, Geertje W. ;
Lipsic, Erik ;
van Veldhuisen, Dirk J. ;
van der Horst, Iwan C. C. ;
Asselbergs, Folkert W. ;
van der Harst, Pim .
CIRCULATION-CARDIOVASCULAR GENETICS, 2017, 10 (01)
[7]  
Faraway JJ, 2015, LINEAR MODELS R
[8]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1
[9]   Tailoring treatments using treatment effect modification [J].
Schmidt, A. F. ;
Klungel, O. H. ;
Nielen, M. ;
de Boer, A. ;
Groenwold, R. H. H. ;
Hoes, A. W. .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 (04) :355-362
[10]   Exploring interaction effects in small samples increases rates of false-positive and false-negative findings: results from a systematic review and simulation study [J].
Schmidt, Amand F. ;
Groenwold, Rolf H. H. ;
Knol, Mirjam J. ;
Hoes, Arno W. ;
Nielen, Mirjam ;
Roes, Kit C. B. ;
de Boer, Anthonius ;
Klungel, Olaf H. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2014, 67 (07) :821-829