Some remarks on a singular reaction-diffusion system arising in predator prey modeling

被引:0
|
作者
Gaucel, Sebastien
Langlais, Michel
机构
[1] INRA, Unite MIA MathRisq, F-78352 Jouy En Josas, France
[2] Univ Bordeaux 2, CNRS, UMR 5251, IMB, F-33076 Bordeaux, France
[3] INRIA Futurs Anubis, F-33076 Bordeaux, France
关键词
global existence; blow up time; oscillations; singular reaction-diffusion systems; predator-prey model in insular environment; invasion and persistence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note is dedicated to the question of global existence for solutions to a two component singular system of reaction-diffusion equations modeling predator-prey interactions in insular environments. Depending on a 2D parameter space, positive orbits of the underlying ODE system undergo interesting dynamics, e.g., finite time existence and global existence may coexist. These results are partially extended to the reaction-diffusion system in the case of identical diffusivities. Our analysis relies on an auxiliary non singular reaction-diffusion system whose solutions may or may not blow up in finite time. Numerical simulations illustrate our analysis, including a numerical evidence of spatio-temporal oscillations.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [41] On the Stability Analysis of a Reaction-Diffusion Predator-Prey Model Incorporating Prey Refuge
    Lazaar O.
    Serhani M.
    Alla A.
    Raissi N.
    International Journal of Applied and Computational Mathematics, 2022, 8 (4)
  • [42] On some reaction-diffusion systems with nonlinear diffusion arising in biology
    Feireisl, E
    Mimura, M
    Hilhorst, D
    Weidenfeld, R
    NONLINEAR PDE'S IN CONDENSED MATTER AND REACTIVE FLOWS, 2002, 569 : 115 - 125
  • [43] Qualitative Analysis for a Reaction-Diffusion Predator-Prey Model with Disease in the Prey Species
    Qiao, Meihong
    Liu, Anping
    Forys, Urszula
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [44] A reaction-diffusion system arising from electrochemistry
    Bieniasz, L. K.
    McKee, S.
    Vynnycky, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
  • [45] SPATIOTEMPORAL DYNAMICS OF TELEGRAPH REACTION-DIFFUSION PREDATOR-PREY MODELS
    Hernandez-Martinez, Eliseo
    Puebla, Hector
    Perez-Munoz, Teresa
    Gonzalez-Brambila, Margarita
    Velasco-Hernandez, Jorge X.
    BIOMAT 2012: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2013, : 268 - 281
  • [46] A reaction-diffusion system arising in population genetics
    Ruan, WH
    QUARTERLY OF APPLIED MATHEMATICS, 1996, 54 (01) : 133 - 152
  • [48] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [49] A nonlocal reaction-diffusion prey-predator model with free boundary
    Li, Chenglin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 378 - 390
  • [50] Parameter identification of a reaction-diffusion predator-prey system based on optimal control theory
    Miao, Li
    Zhu, Linhe
    APPLIED MATHEMATICAL MODELLING, 2024, 133 : 1 - 19