Some remarks on a singular reaction-diffusion system arising in predator prey modeling

被引:0
|
作者
Gaucel, Sebastien
Langlais, Michel
机构
[1] INRA, Unite MIA MathRisq, F-78352 Jouy En Josas, France
[2] Univ Bordeaux 2, CNRS, UMR 5251, IMB, F-33076 Bordeaux, France
[3] INRIA Futurs Anubis, F-33076 Bordeaux, France
关键词
global existence; blow up time; oscillations; singular reaction-diffusion systems; predator-prey model in insular environment; invasion and persistence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note is dedicated to the question of global existence for solutions to a two component singular system of reaction-diffusion equations modeling predator-prey interactions in insular environments. Depending on a 2D parameter space, positive orbits of the underlying ODE system undergo interesting dynamics, e.g., finite time existence and global existence may coexist. These results are partially extended to the reaction-diffusion system in the case of identical diffusivities. Our analysis relies on an auxiliary non singular reaction-diffusion system whose solutions may or may not blow up in finite time. Numerical simulations illustrate our analysis, including a numerical evidence of spatio-temporal oscillations.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [31] On a predator-prey reaction-diffusion model with nonlocal effects
    Han, Bang-Sheng
    Yang, Ying-Hui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 49 - 61
  • [32] Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting
    Guin, Lakshmi Narayan
    Pal, Sudipta
    Chakravarty, Santabrata
    Djilali, Salih
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (01)
  • [33] On a prey-predator reaction-diffusion system with Holling type III functional response
    Apreutesei, Narcisa
    Dimitriu, Gabriel
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (02) : 366 - 379
  • [34] Turing Stability Analysis in a Reaction-Diffusion Predator-Prey System with Fear Effect
    Chen, Gong
    Xiao, Min
    Chen, Shi
    Zhou, Shuai
    Lu, Yunxiang
    Xing, Ruitao
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 31 - 36
  • [35] Dynamical Complexity and Numerical Bifurcation Analysis of a Reaction-Diffusion Predator-Prey System
    Lajmiri, Z.
    Orak, I
    Khoshsiar, R.
    Azizi, P.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2020, 9 (02) : 323 - 337
  • [36] A REACTION-DIFFUSION SYSTEM ARISING IN MODELING MAN-ENVIRONMENT DISEASES
    CAPASSO, V
    KUNISCH, K
    QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (03) : 431 - 450
  • [37] Diffusion effect and stability analysis of a predator-prey system described by a delayed reaction-diffusion equations
    Ge, Zhihao
    He, Yinnian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1432 - 1450
  • [38] Analysis of a Delayed Reaction-Diffusion Predator-Prey System with Fear Effect and Anti-Predator Behaviour
    Chen, Zhenglong
    Li, Shunjie
    Zhang, Xuebing
    MATHEMATICS, 2022, 10 (18)
  • [39] On wavefront patterns in a fractional reaction-diffusion model for predator-prey system with anti-predator behavior
    Mansour, Mahmoud B. A.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (13) : 4535 - 4541
  • [40] Global convergence of a reaction-diffusion predator-prey model with stage structure for the predator
    Xu, Rui
    Chaplain, M. A. J.
    Davidson, F. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 388 - 401