Some remarks on a singular reaction-diffusion system arising in predator prey modeling

被引:0
|
作者
Gaucel, Sebastien
Langlais, Michel
机构
[1] INRA, Unite MIA MathRisq, F-78352 Jouy En Josas, France
[2] Univ Bordeaux 2, CNRS, UMR 5251, IMB, F-33076 Bordeaux, France
[3] INRIA Futurs Anubis, F-33076 Bordeaux, France
关键词
global existence; blow up time; oscillations; singular reaction-diffusion systems; predator-prey model in insular environment; invasion and persistence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note is dedicated to the question of global existence for solutions to a two component singular system of reaction-diffusion equations modeling predator-prey interactions in insular environments. Depending on a 2D parameter space, positive orbits of the underlying ODE system undergo interesting dynamics, e.g., finite time existence and global existence may coexist. These results are partially extended to the reaction-diffusion system in the case of identical diffusivities. Our analysis relies on an auxiliary non singular reaction-diffusion system whose solutions may or may not blow up in finite time. Numerical simulations illustrate our analysis, including a numerical evidence of spatio-temporal oscillations.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条