LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS

被引:3
|
作者
Lachos, Victor H. [1 ]
Ghosh, Pulak [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Univ Estadual Campinas, Dept Estatist, Sao Paulo, Brazil
[2] Indian Inst Management, Dept Quantitat Methods & Informat Sci, Bangalore 566076, Karnataka, India
[3] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
EM-algorithm; linear mixed models; skew-normal/independent distributions; skewness; MAXIMUM-LIKELIHOOD; EM; DISTRIBUTIONS; ALGORITHM; ECM;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Linear mixed models with normally distributed response are routinely used in longitudinal data. However, the accuracy of the assumed normal distribution is crucial for valid inference of the parameters We present a new class of asymmetric linear mixed models that provides for an efficient estimation of the parameters in the analysis of longitudinal data We assume that, marginally. the random effects follow a multivariate skew-normal/independent distribution (Branco and Dey (2001)) and that the random errors follow a symmetric normal/independent distribution (Lange and Sinsheimer (1993)), providing an appealing robust alternative to the usual symmetric normal distribution in linear mixed models Specific distributions examined include the skew-normal, the skew-t, the skew-slash, and the skew-contaminated normal distribution We present all efficient EM-type algorithm algorithm for the computation of maximum likelihood estimation of parameters The technique for the prediction of future responses under this class of distributions is also investigated The methodology is illustrated through an applications to Framingham cholesterol data and a. simulation study.
引用
收藏
页码:303 / 322
页数:20
相关论文
共 50 条
  • [11] Local Influence Analysis for Skew-Normal Linear Mixed Models
    Montenegro, Lourdes C.
    Lachos, Victor H.
    Bolfarine, Heleno
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (04) : 484 - 496
  • [12] Inferences in linear mixed models with skew-normal random effects
    Ren Dao Ye
    Tong Hui Wang
    Acta Mathematica Sinica, English Series, 2015, 31 : 576 - 594
  • [13] Inferences in Linear Mixed Models with Skew-normal Random Effects
    Ren Dao YE
    Tong Hui WANG
    ActaMathematicaSinica, 2015, 31 (04) : 576 - 594
  • [14] Generalized skew-normal models:: properties and inference
    Gomez, Hector W.
    Salinas, Hugo S.
    Bolfarine, Heleno
    STATISTICS, 2006, 40 (06) : 495 - 505
  • [15] Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads
    Bandyopadhyay, Dipankar
    Lachos, Victor H.
    Castro, Luis M.
    Dey, Dipak K.
    BIOMETRICAL JOURNAL, 2012, 54 (03) : 405 - 425
  • [16] The ANOVA-type inference in linear mixed model with skew-normal error
    Wu Mixia
    Zhao Jing
    Wang Tonghui
    Zhao Yan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2017, 30 (03) : 710 - 720
  • [17] The ANOVA-Type Inference in Linear Mixed Model with Skew-Normal Error
    WU Mixia
    ZHAO Jing
    WANG Tonghui
    ZHAO Yan
    JournalofSystemsScience&Complexity, 2017, 30 (03) : 710 - 720
  • [18] The ANOVA-type inference in linear mixed model with skew-normal error
    Mixia Wu
    Jing Zhao
    Tonghui Wang
    Yan Zhao
    Journal of Systems Science and Complexity, 2017, 30 : 710 - 720
  • [19] Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model
    Najafi, Zeinolabedin
    Zare, Karim
    Mahmoudi, Mohammad Reza
    Shokri, Soheil
    Mosavi, Amir
    MATHEMATICS, 2022, 10 (15)
  • [20] Diagnostic analysis in scale mixture of skew-normal linear mixed models
    Travassos, Keyliane
    Matos, Larissa A.
    Schumacher, Fernanda L.
    STATISTICA NEERLANDICA, 2025, 79 (01)