LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS

被引:3
|
作者
Lachos, Victor H. [1 ]
Ghosh, Pulak [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Univ Estadual Campinas, Dept Estatist, Sao Paulo, Brazil
[2] Indian Inst Management, Dept Quantitat Methods & Informat Sci, Bangalore 566076, Karnataka, India
[3] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
EM-algorithm; linear mixed models; skew-normal/independent distributions; skewness; MAXIMUM-LIKELIHOOD; EM; DISTRIBUTIONS; ALGORITHM; ECM;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Linear mixed models with normally distributed response are routinely used in longitudinal data. However, the accuracy of the assumed normal distribution is crucial for valid inference of the parameters We present a new class of asymmetric linear mixed models that provides for an efficient estimation of the parameters in the analysis of longitudinal data We assume that, marginally. the random effects follow a multivariate skew-normal/independent distribution (Branco and Dey (2001)) and that the random errors follow a symmetric normal/independent distribution (Lange and Sinsheimer (1993)), providing an appealing robust alternative to the usual symmetric normal distribution in linear mixed models Specific distributions examined include the skew-normal, the skew-t, the skew-slash, and the skew-contaminated normal distribution We present all efficient EM-type algorithm algorithm for the computation of maximum likelihood estimation of parameters The technique for the prediction of future responses under this class of distributions is also investigated The methodology is illustrated through an applications to Framingham cholesterol data and a. simulation study.
引用
收藏
页码:303 / 322
页数:20
相关论文
共 50 条
  • [1] Bayesian inference for skew-normal linear mixed models
    Arellano-Valle, R. B.
    Bolfarine, H.
    Lachos, V. H.
    JOURNAL OF APPLIED STATISTICS, 2007, 34 (06) : 663 - 682
  • [2] Influence analyses of skew-normal/independent linear mixed models
    Zeller, Camila B.
    Labra, Filidor V.
    Lachos, Victor H.
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (05) : 1266 - 1280
  • [3] Likelihood-based inference for multivariate skew-normal regression models
    Lachos, Victor H.
    Bolfarine, Heleno
    Arellano-Valle, Reinaldo B.
    Montenegro, Lourdes C.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 1769 - 1786
  • [4] Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions
    Mattos, Thalita do Bem
    Garay, Aldo M.
    Lachos, Victor H.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) : 2039 - 2066
  • [5] Linear mixed models for skew-normal/independent bivariate responses with an application to periodontal disease
    Bandyopadhyay, Dipankar
    Lachos, Victor H.
    Abanto-Valle, Carlos A.
    Ghosh, Pulak
    STATISTICS IN MEDICINE, 2010, 29 (25) : 2643 - 2655
  • [6] Robust linear mixed models with skew-normal independent distributions from a Bayesian perspective
    Lachos, Victor H.
    Dey, Dipak K.
    Cancho, Vicente G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (12) : 4098 - 4110
  • [7] Inferences in linear mixed models with skew-normal random effects
    Ye, Ren Dao
    Wang, Tong Hui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (04) : 576 - 594
  • [8] Estimation in skew-normal linear mixed measurement error models
    Kheradmandi, Ameneh
    Rasekh, Abdolrahman
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 : 1 - 11
  • [9] Inferences in Linear Mixed Models with Skew-normal Random Effects
    Ren Dao YE
    Tong Hui WANG
    Acta Mathematica Sinica,English Series, 2015, (04) : 576 - 594
  • [10] Bayesian quantile regression for skew-normal linear mixed models
    Aghamohammadi, A.
    Meshkani, M. R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 10953 - 10972