LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS

被引:3
作者
Lachos, Victor H. [1 ]
Ghosh, Pulak [2 ]
Arellano-Valle, Reinaldo B. [3 ]
机构
[1] Univ Estadual Campinas, Dept Estatist, Sao Paulo, Brazil
[2] Indian Inst Management, Dept Quantitat Methods & Informat Sci, Bangalore 566076, Karnataka, India
[3] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
EM-algorithm; linear mixed models; skew-normal/independent distributions; skewness; MAXIMUM-LIKELIHOOD; EM; DISTRIBUTIONS; ALGORITHM; ECM;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Linear mixed models with normally distributed response are routinely used in longitudinal data. However, the accuracy of the assumed normal distribution is crucial for valid inference of the parameters We present a new class of asymmetric linear mixed models that provides for an efficient estimation of the parameters in the analysis of longitudinal data We assume that, marginally. the random effects follow a multivariate skew-normal/independent distribution (Branco and Dey (2001)) and that the random errors follow a symmetric normal/independent distribution (Lange and Sinsheimer (1993)), providing an appealing robust alternative to the usual symmetric normal distribution in linear mixed models Specific distributions examined include the skew-normal, the skew-t, the skew-slash, and the skew-contaminated normal distribution We present all efficient EM-type algorithm algorithm for the computation of maximum likelihood estimation of parameters The technique for the prediction of future responses under this class of distributions is also investigated The methodology is illustrated through an applications to Framingham cholesterol data and a. simulation study.
引用
收藏
页码:303 / 322
页数:20
相关论文
共 32 条
[1]  
[Anonymous], 1993, Continuous Univariate Distributions, DOI DOI 10.1016/0167-9473(96)90015-8
[2]  
[Anonymous], J DATA SCI
[3]   On fundamental skew distributions [J].
Arellano-Valle, RB ;
Genton, MG .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 96 (01) :93-116
[4]   On the unification of families of skew-normal distributions [J].
Arellano-Valle, Reinaldo B. ;
Azzalini, Adelchi .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (03) :561-574
[5]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[6]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[7]   Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :367-389
[8]   On Gauss's characterization of the normal distribution [J].
Azzalini, Adelchi ;
Genton, Marc G. .
BERNOULLI, 2007, 13 (01) :169-174
[9]   A general class of multivariate skew-elliptical distributions [J].
Branco, MD ;
Dey, DK .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) :99-113
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38