Band engineering method to create Dirac cones of accidental degeneracy in general photonic crystals without symmetry

被引:11
作者
Chu, Hongchen [1 ,2 ]
Zhang, Yang [1 ,2 ]
Luo, Jie [3 ]
Xu, Changqing [4 ]
Xiong, Xiang [1 ,2 ]
Peng, Ruwen [1 ,2 ]
Wang, Mu [1 ,2 ]
Lai, Yun [1 ,2 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, MOE Key Lab Modern Acoust, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Div Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
来源
OPTICS EXPRESS | 2021年 / 29卷 / 12期
基金
中国国家自然科学基金;
关键词
POINTS;
D O I
10.1364/OE.427389
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Symmetry usually plays a key role in the formation of the Dirac cone in the band structure of triangular or hexagonal systems. In this work, we demonstrate a systematic method to create Dirac cones of accidental degeneracy in general photonic crystals without symmetry. With this method, a band gap can be closed gradually through a series of modification to the unit structure based on the eigenfields of the band edges, and consequently a Dirac point is formed with Dirac conical dispersions in its vicinity. The validity of this approach is demonstrated by three examples. We further show that the Dirac cones of accidental degeneracy have the same properties as the symmetry-induced Dirac cones, such as finite group velocity and pseudo-diffusive transmission. Our finding opens a route for the engineering of accidental degeneracy in general photonic crystals beyond the scope of high-symmetry ones. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:18070 / 18080
页数:11
相关论文
共 47 条
  • [1] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [2] Chan C. T., 2012, Progress In Electromagnetics Research B, V44, P163
  • [3] Transmission in the vicinity of the Dirac point in hexagonal photonic crystals
    Diem, Marcus
    Koschny, Thomas
    Soukoulis, C. M.
    [J]. PHYSICA B-CONDENSED MATTER, 2010, 405 (14) : 2990 - 2995
  • [5] Ultra-low-loss on-chip zero-index materials
    Dong, Tian
    Liang, Jiujiu
    Camayd-Munoz, Sarah
    Liu, Yueyang
    Tang, Haoning
    Kita, Shota
    Chen, Peipei
    Wu, Xiaojun
    Chu, Weiguo
    Mazur, Eric
    Li, Yang
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [6] Observation of acoustic Dirac-like cone and double zero refractive index
    Dubois, Marc
    Shi, Chengzhi
    Zhu, Xuefeng
    Wang, Yuan
    Zhang, Xiang
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [7] Observation of Three-Dimensional Photonic Dirac Points and Spin-Polarized Surface Arcs
    Guo, Qinghua
    You, Oubo
    Yang, Biao
    Sellman, James B.
    Blythe, Edward
    Liu, Hongchao
    Xiang, Yuanjiang
    Li, Jensen
    Fan, Dianyuan
    Chen, Jing
    Chan, C. T.
    Zhang, Shuang
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (20)
  • [8] Three Dimensional Photonic Dirac Points in Metamaterials
    Guo, Qinghua
    Yang, Biao
    Xia, Lingbo
    Gao, Wenlong
    Liu, Hongchao
    Chen, Jing
    Xiang, Yuanjiang
    Zhang, Shuang
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (21)
  • [9] Unconventional integer quantum Hall effect in graphene
    Gusynin, VP
    Sharapov, SG
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (14)
  • [10] Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
    Haldane, F. D. M.
    Raghu, S.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (01)