A Magnetic Field In-Situ Measurement Method of the Heating Film in Atomic Sensors

被引:5
作者
Liang, Xiaoyang [1 ]
Zhou, Xinxiu [1 ,2 ]
Hu, Die [1 ]
Wu, Wenfeng [1 ]
Jia, Yuchen [1 ]
机构
[1] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Res Inst Frontier Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic fields; Magnetic field measurement; Heating systems; Coils; Sensors; Magnetometers; Atomic measurements; Magnetic field; in-situ measurement; heating film; atomic sensor;
D O I
10.1109/JSEN.2021.3060081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the magnetically sensitive atomic sensors, heating the vapor cell without introducing magnetic field is required. In order to evaluate the heating film magnetic field suppression effect, independent magnetometer is usually employed. However, in this method the accuracy of magnetic field measurement result is greatly affected by the distance between the magnetometer and the tested heating film, as magnetic field is inversely proportional to the distance. In order to overcome this issue, an in-situ magnetic field measurement method is proposed. The measurement principle is based on the Larmor precession of the spin polarized noble gases. The magnetic field of the heating film assembled into the atomic sensor can be measured by the atomic sensor itself. The measurement results directly reflect the influence of the heating film on the atomic sensor. So, the distance error existed in the independent magnetometer-based method can be avoided in principle. Owing to the in-situ measurement method, the measurement results can be used to evaluate the magnetic field suppression effect more accurately. Finally, it can be used for further improve the heating film performance.
引用
收藏
页码:10539 / 10545
页数:7
相关论文
共 29 条
[1]   Measurement of the permanent electric dipole moment of the 129Xe atom [J].
Allmendinger, F. ;
Engin, I ;
Heil, W. ;
Karpuk, S. ;
Krause, H-J ;
Niederlaender, B. ;
Offenhaeusser, A. ;
Repetto, M. ;
Schmidt, U. ;
Zimmer, S. .
PHYSICAL REVIEW A, 2019, 100 (02)
[2]   High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation [J].
Allred, JC ;
Lyman, RN ;
Kornack, TW ;
Romalis, MV .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :130801-130801
[3]  
[Anonymous], 2012, THESIS PRINCETON U P
[4]   The THEMIS Fluxgate Magnetometer [J].
Auster, H. U. ;
Glassmeier, K. H. ;
Magnes, W. ;
Aydogar, O. ;
Baumjohann, W. ;
Constantinescu, D. ;
Fischer, D. ;
Fornacon, K. H. ;
Georgescu, E. ;
Harvey, P. ;
Hillenmaier, O. ;
Kroth, R. ;
Ludlam, M. ;
Narita, Y. ;
Nakamura, R. ;
Okrafka, K. ;
Plaschke, F. ;
Richter, I. ;
Schwarzl, H. ;
Stoll, B. ;
Valavanoglou, A. ;
Wiedemann, M. .
SPACE SCIENCE REVIEWS, 2008, 141 (1-4) :235-264
[5]  
Brown J. M., 2011, Ph.D. Thesis
[6]  
Bulatowicz M, 2012, IEEE POSITION LOCAT, P1088, DOI 10.1109/PLANS.2012.6236852
[7]  
Bulatowicz M. D., 2012, U.S. Patent, Patent No. [8 138 760, 8138760]
[8]   EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS [J].
CARR, HY ;
PURCELL, EM .
PHYSICAL REVIEW, 1954, 94 (03) :630-638
[9]   Measurement of rotational magnetic properties of nanocrystalline alloys by a modified B-H sensor [J].
Chen, Long ;
Wang, Youhua ;
Zhao, Zhenghan ;
Zhao, Hanyu ;
Liu, Chengcheng .
AIP ADVANCES, 2017, 7 (05)
[10]  
Eklund E J., 2008, Microgyroscope Based on Spin-Polarized Nuclei, Dissertation for the Doctoral Degree