PST: a More Practical Adversarial Learning-based Defense Against Website Fingerprinting

被引:1
作者
Jiang, Minghao [1 ,2 ]
Wang, Yong [3 ]
Gou, Gaopeng [1 ,2 ]
Cai, Wei [1 ,2 ]
Xiong, Gang [1 ,2 ]
Shi, Junzheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Coordinat Ctr China, Natl Comp Network Emergency Response Tech Team, Hong Kong, Peoples R China
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
关键词
Anonymity Communication; Privacy; Website Fingerprinting attack and defense; Deep Learning; Adversarial Machine Learning;
D O I
10.1109/GLOBECOM42002.2020.9322307
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To prevent serious privacy leakage from website fingerprinting (WF) attacks, many traditional or adversarial WF defenses have been released. However, traditional WF defenses such as Walkie-Talkie (W-T) still generate patterns that might be captured by the deep learning (DL) based WF attacks, which are not effective. Adversarial perturbation based WF defenses better confuse WF attacks, but their requirements for the entire original traffic trace and perturbating any points including historical packets or cells of the network traffic are not practical. To deal with the effectiveness and practicality issues of existing defenses, we proposed a novel WF defense in this paper. called PST. Given a few past bursts of a trace as input, PST Predicts subsequent fuzzy bursts with a neural network, then Searches small but effective adversarial perturbation directions based on observed and predicted bursts, and finally Transfers the perturbation directions to the remaining bursts. Our experimental results over a public closed-world dataset demonstrate that PST can successfully break the network traffic pattern and achieve a high evasion rate of 87.6%, beating W-T by more than 31.59% at the same bandwidth overhead, with only observing 10 transferred bursts. Moreover, our defense adapts to WF attacks dynamically, which could be retrained or updated.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] Abe K., 2016, P ASIA PACIFIC ADV N, V42, P15
  • [2] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
  • [3] Bethge M, 2017, P REL MACH LEARN WIL, DOI DOI 10.21105/JOSS.02607
  • [4] Brendel Wieland, 2017, arXiv:1712.04248.
  • [5] Cai Xiang, 2012, P 2012 ACM C COMP CO, P605, DOI DOI 10.1145/2382196.2382260
  • [6] Towards Evaluating the Robustness of Neural Networks
    Carlini, Nicholas
    Wagner, David
    [J]. 2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, : 39 - 57
  • [7] Gong Y, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4672
  • [8] Goodfellow Ian J., 2015, 3 INT C LEARN REPR I
  • [9] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [10] Hayes J, 2016, PROCEEDINGS OF THE 25TH USENIX SECURITY SYMPOSIUM, P1187