On image restoration from random sampling noisy frequency data with regularization

被引:1
作者
Liu, Xiaoman [1 ]
Liu, Jijun [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Image restoration; total variation; wavelet sparsity; error estimate; iteration; numerics; ALGORITHM; RECONSTRUCTION; MODELS; OPTIMIZATION; MINIMIZERS;
D O I
10.1080/17415977.2018.1557655
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Consider the image restoration using random sampling noisy frequency data by total variation regularization. By exploring image sparsity property under wavelet expansion, weestablish an optimization model with two regularizing terms specifying image sparsity and edge preservation on the restored image. The choice strategy for the regularizing parameters is rigorously set up together with corresponding error estimate on the restored image. The cost functional with data-fitting in the frequency domain is minimized using the Bregman iteration scheme. By deriving the gradient of the cost functional explicitly, the minimizer of the cost functional at each Bregman step is also generated by an inner iteration process with Tikhonov regularization, which is implemented stably and efficiently due to the special structure of the regularizing iterative matrix. Numerical tests are given to show the validity of the proposed scheme.
引用
收藏
页码:1765 / 1789
页数:25
相关论文
共 50 条
  • [11] Iteratively reweighted algorithms for compressive sensing
    Chartrand, Rick
    Yin, Wotao
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3869 - +
  • [12] Exact reconstruction of sparse signals via nonconvex minimization
    Chartrand, Rick
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) : 707 - 710
  • [13] A DUALITY-BASED SPLITTING METHOD FOR l1-TV IMAGE RESTORATION WITH AUTOMATIC REGULARIZATION PARAMETER CHOICE
    Clason, Christian
    Jin, Bangti
    Kunisch, Karl
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) : 1484 - 1505
  • [14] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [15] A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science
    Esser, Ernie
    Zhang, Xiaoqun
    Chan, Tony F.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (04): : 1015 - 1046
  • [16] Compressive Sensing via Nonlocal Smoothed Rank Function
    Fan, Ya-Ru
    Huang, Ting-Zhu
    Liu, Jun
    Zhao, Xi-Le
    [J]. PLOS ONE, 2016, 11 (09):
  • [17] The Split Bregman Method for L1-Regularized Problems
    Goldstein, Tom
    Osher, Stanley
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02): : 323 - 343
  • [18] A FAST l1-TV ALGORITHM FOR IMAGE RESTORATION
    Guo, Xiaoxia
    Li, Fang
    Ng, Michael K.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) : 2322 - 2341
  • [19] Nonconvex TVq-Models in Image Restoration: Analysis and a Trust-Region Regularization-Based Superlinearly Convergent Solver
    Hintermueller, Michael
    Wu, Tao
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (03): : 1385 - 1415
  • [20] Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration
    Hintermueller, Michael
    Rincon-Camacho, M. Monserrat
    [J]. INVERSE PROBLEMS, 2010, 26 (08)