Evaluation of Oxygen Vacancy in ZnO using Raman Spectroscopy

被引:0
作者
Fukushima, Hiroaki [1 ]
Kozu, Tomomi [1 ]
Shima, Hiromi [1 ]
Funakubo, Hiroshi [2 ]
Uchida, Hiroshi [3 ]
Katoda, Takashi [4 ]
Nishida, Ken [1 ]
机构
[1] Natl Def Acad, Dept Commun Engn, Yokosuka, Kanagawa 2398686, Japan
[2] Tokyo Inst Technol, Dept Innovat & Engn Mat, Midori Ku, Yokohama, Kanagawa 2268502, Japan
[3] Sophia Univ, Dept Mat & Life Sci, Chiyoda Ku, Tokyo 1028554, Japan
[4] Kochi Univ Technol, Dept Elect & Photon Syst Engn, Kami, Kochi 7828502, Japan
来源
2015 JOINT IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRIC, INTERNATIONAL SYMPOSIUM ON INTEGRATED FUNCTIONALITIES AND PIEZOELECTRIC FORCE MICROSCOPY WORKSHOP (ISAF/ISIF/PFM) | 2015年
关键词
Zinc oxide; Raman spectroscopy; Oxygen vacancy; Reduced treatment; Re-oxidized treatment; PHOTOLUMINESCENCE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Oxygen vacancies in zinc oxide (ZnO) are intrinsic defects, which are easily generated during crystal growth or device processing. Investigations of defects, such as oxygen vacancies, are important to understand the properties of ZnO. In this study, we attempt to quantify oxygen vacancies in ZnO powders using Raman spectroscopy. ZnO powder is reduced in a hydrogen atmosphere at 300-600 degrees C for 30-90 min. The peak position of the E-2(high) mode, which is related to the oxide ion vibration, shifts toward a lower frequency as the oxygen vacancies increase. Upon re-oxidation, the initial E-2(high) peak position is restored. Because the E-2(high) peak shift is scaled with the amount of oxygen vacancies, this relationship can be used to estimate the amount of oxygen vacancies.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 19 条
[1]   ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization [J].
Al-Kahlout, A. .
THIN SOLID FILMS, 2012, 520 (06) :1814-1820
[2]   Origin of the optical phonon frequency shifts in ZnO quantum dots [J].
Alim, KA ;
Fonoberov, VA ;
Balandin, AA .
APPLIED PHYSICS LETTERS, 2005, 86 (05) :1-3
[3]   FIRST-ORDER RAMAN EFFECT IN WURTZITE-TYPE CRYSTALS [J].
ARGUELLO, CA ;
ROUSSEAU, DL ;
PORTO, SPS .
PHYSICAL REVIEW, 1969, 181 (03) :1351-&
[4]   Infrared dielectric functions and phonon modes of high-quality ZnO films [J].
Ashkenov, N ;
Mbenkum, BN ;
Bundesmann, C ;
Riede, V ;
Lorenz, M ;
Spemann, D ;
Kaidashev, EM ;
Kasic, A ;
Schubert, M ;
Grundmann, M ;
Wagner, G ;
Neumann, H ;
Darakchieva, V ;
Arwin, H ;
Monemar, B .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :126-133
[5]   Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam [J].
Chen, ZQ ;
Kawasuso, A ;
Xu, Y ;
Naramoto, H ;
Yuan, XL ;
Sekiguchi, T ;
Suzuki, R ;
Ohdaira, T .
PHYSICAL REVIEW B, 2005, 71 (11)
[6]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[7]   RAMAN EFFECT IN ZINC OXIDE [J].
DAMEN, TC ;
PORTO, SPS ;
TELL, B .
PHYSICAL REVIEW, 1966, 142 (02) :570-&
[8]  
Ghosh A, 2009, J APPL PHYS, V124906
[9]   Microstructural aspects for defect emission and E2high phonon mode of ZnO thin films [J].
Ghosh, Avijit ;
Choudhary, R. N. P. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
[10]   Oxygen vacancies in ZnO [J].
Leiter, F ;
Alves, H ;
Pfisterer, D ;
Romanov, NG ;
Hofmann, DM ;
Meyer, BK .
PHYSICA B-CONDENSED MATTER, 2003, 340 :201-204