A new superconvergence for mixed finite element approximations

被引:0
作者
Ewing, RE [1 ]
Liu, MJ
Wang, JP
机构
[1] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[2] Imagine Software Inc, New York, NY 10017 USA
[3] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
关键词
superconvergence; mixed finite element method; error estimates; elliptic problems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new superconvergence result is established for numerical solutions of elliptic problems obtained from the mixed finite element method of Raviart-Thomas over rectangular partitions. The well-known optimal order error estimate in L-2-norm for the flux approximation is of order O(h(k+1)), where k greater than or equal to 0 is the order of polynomials employed in the Raviart-Thomas element. The new superconvergence shows an improved accuracy of order O(h(k+3)) between the mixed finite element approximation and an appropriately defined local projection of the flux variable when k > 0. A postprocessing technique using local projection methods is proposed and analyzed in order to provide a new approximate solution with the superconvergent order O(h(k+3)).
引用
收藏
页码:2133 / 2150
页数:18
相关论文
共 16 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]   SUPERCONVERGENCE AND A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR MIXED FINITE-ELEMENTS [J].
BRANDTS, JH .
NUMERISCHE MATHEMATIK, 1994, 68 (03) :311-324
[3]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]   MIXED FINITE-ELEMENTS FOR 2ND-ORDER ELLIPTIC PROBLEMS IN 3 VARIABLES [J].
BREZZI, F ;
DOUGLAS, J ;
DURAN, R ;
FORTIN, M .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :237-250
[6]  
BREZZI F, 1987, RAIRO-MATH MODEL NUM, V21, P581
[7]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[8]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[9]  
DOUGLAS J, 1993, MAT APL COMPUT, V12, P183
[10]  
Douglas J. Jr., 1989, Calcolo, V26, P121, DOI 10.1007/BF02575724