Exponential lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields

被引:50
作者
Grigoriev, D
Razborov, A
机构
[1] Univ Rennes 1, IMR, F-35042 Rennes, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
exponential lower bounds; depth 3 arithmetic circuits; finite fields;
D O I
10.1007/s002009900021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f : D-n --> F for subsets D subset of F, In particular, we prove an exponential lower bound on the complexity of depth 3 arithmetic circuits computing some explicit functions f: (F*)(n) --> F (in particular, the determinant of a matrix).
引用
收藏
页码:465 / 487
页数:23
相关论文
共 18 条
[1]  
AGRAWAL M, TR97016 ECCC
[2]   THE COMPLEXITY OF PARTIAL DERIVATIVES [J].
BAUR, W ;
STRASSEN, V .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :317-330
[3]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[4]   A NOTE ON MATRIX RIGIDITY [J].
FRIEDMAN, J .
COMBINATORICA, 1993, 13 (02) :235-239
[5]  
Grigor'ev D. Yu., 1982, J SOVIET MATH, V118, P25
[6]   Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields [J].
Grigoriev, D ;
Razborov, AA .
39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, :269-278
[7]   Testing shift-equivalence of polynomials by deterministic, probabilistic and quantum machines [J].
Grigoriev, D .
THEORETICAL COMPUTER SCIENCE, 1997, 180 (1-2) :217-228
[8]  
Grigoriev D, 1980, J SOVIET MATH, V14, P1450, DOI [10.1007/BF01693976, DOI 10.1007/BF01693976]
[9]  
Nisan N., 1995, Proceedings. 36th Annual Symposium on Foundations of Computer Science (Cat. No.95CB35834), P16, DOI 10.1109/SFCS.1995.492458