Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation o water deficiency of tomato plants (Solanum lycopersicum L.)

被引:2
|
作者
Andryei, Bulgan [1 ]
Horvath, Kitti Zsuzsanna [1 ]
Agyemang Duah, Stella [1 ]
Takacs, Sandor [1 ]
Egei, Marton [1 ]
Szuvandzsiev, Peter [2 ]
Nemenyi, Andras [1 ]
机构
[1] Szent Istvan Univ, Inst Hort, Fac Agr & Environm Sci, Pater Karoly Utca 1, H-2100 Godollo, Hungary
[2] Univer Prod Plc, Szolnoki Ut 35, H-6000 Kecskemet, Hungary
来源
关键词
tomato; water stress; chlorophyll fluorescence; canopy temperature; Brix; vitamin C;
D O I
10.5513/JCEA01/22.1.3036
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Plant growth promoting rhizobacteria (PGPR) can improve the growth, productivity and tolerance of plants under stress conditions. The aim of this study was to investigate the effect of PGPRs on the physiological traits related to photosynthesis, canopy temperature (CT) and yield of tomato hybrids under water scarcity in open field conditions. Seedlings of H-1015 and UG 812J F, tomato hybrids were treated by B1, B2, B3 bacteria strains before planting, then they were grown under regularly irrigated (RI=ET100%), deficit irrigated (DI=ET50%) and non-irrigated (10) conditions in the field experiments. During flowering period, a higher chlorophyll fluorescence (Fv/Fm), canopy temperature and lower chlorophyll content (SPAD) were measured for plants treated by B2 and B3 treatments than for untreated plants. From flowering to ripening of tomato fruit, PGPRs influenced negatively the Fv/Fm, positively the SPAD value and canopy temperature, which resulted in a 47.8 to 75.4% increase in the green healthy fruit yield compared to the control. Under severe dry, non-irrigated conditions, B3 treatment increased the green fruits yield by 28.9%, the Brix by 16% and the vitamin C content by 13.6% in comparison with the untreated plants. Under moderate water deficiency using deficit irrigation the plants treated by B3 produced the same marketable yield and 33% lower diseased yield than untreated plants and they produced 9.5% higher Brix and 12.7% higher vitamin C content.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [1] USE OF PLANT GROWTH PROMOTING RHIZOBACTERIA AGAINST SALT STRESS FOR TOMATO (Solanum lycopersicum L.) SEEDLING GROWTH
    Yilmaz, Yagmur
    Erdinc, Ceknas
    Akkopru, Ahmet
    Kipcak, Selma
    ACTA SCIENTIARUM POLONORUM-HORTORUM CULTUS, 2020, 19 (06): : 15 - 29
  • [2] Isolation and characterization of plant growth promoting rhizobacteria and their biocontrol efficacy against phytopathogens of tomato (Solanum lycopersicum L.)
    Parasuraman, Paramanantham
    Pattnaik, Subha Swaraj
    Busi, Siddhardha
    Marraiki, Najat
    Elgorban, Abdallah M.
    Syed, Asad
    PLANT BIOSYSTEMS, 2022, 156 (01): : 164 - 170
  • [3] Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting rhizobacteria
    Ullah, Ubaid
    Ashraf, Muhammad
    Shahzad, Sher Muhammad
    Siddiqui, Ali Raza
    Piracha, Muhammad Awais
    Suleman, Muhammad
    SOIL & ENVIRONMENT, 2016, 35 (01) : 65 - 75
  • [4] Insect Gut Bacteria Promoting the Growth of Tomato Plants (Solanum lycopersicum L.)
    Krawczyk, Krzysztof
    Szabelska-Beresewicz, Alicja
    Przemieniecki, Sebastian Wojciech
    Szymanczyk, Mateusz
    Obrepalska-Steplowska, Aleksandra
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [5] Performance of Plant-Growth-Promoting Rhizobacteria (PGPR) Isolated from Sandy Soil on Growth of Tomato (Solanum lycopersicum L.)
    Rehan, Medhat
    Al-Turki, Ahmad
    Abdelmageed, Adil H. A.
    Abdelhameid, Noha M.
    Omar, Ayman F.
    PLANTS-BASEL, 2023, 12 (08):
  • [6] Isolation of rhizobacteria associated with tomato (Solanum lycopersicum L.) and its potential to promote plant growth
    Daza-Martinez, Yuridia M.
    Almaraz-Suarez, Juan J. E.
    Rodriguez-Mendoza, Maria N.
    Angulo-Castro, Azarel
    Silva-Rojas, Hilda, V
    ITEA-INFORMACION TECNICA ECONOMICA AGRARIA, 2022, 118 (03): : 345 - 360
  • [7] Plant growth promoting microorganisms on biocontrol of Alternaria alternata in tomato (Solanum lycopersicum L.)
    Coromoto Alcedo, Yelitza
    Reyes, Isbelia
    BIOAGRO, 2018, 30 (01) : 59 - 66
  • [8] Effects of Plant-Growth-Promoting Rhizobacteria (PGPR) and Cyanobacteria on Botanical Characteristics of Tomato (Solanum lycopersicon L.) Plants
    Gashash, Ebtesam A.
    Osman, Nahid A.
    Alsahli, Abdulaziz A.
    Hewait, Heba M.
    Ashmawi, Ashmawi E.
    Alshallash, Khalid S.
    El-Taher, Ahmed M.
    Azab, Enas S.
    Abd El-Raouf, Hany S.
    Ibrahim, Mohamed E. M.
    PLANTS-BASEL, 2022, 11 (20):
  • [9] Activity of Plant Growth Promoting Rhizobacteria (PGPRs) in the Biocontrol of Tomato Fusarium Wilt
    Boukerma, Lamia
    Benchabane, Messaoud
    Charif, Ahmed
    Khelifi, Lakhdar
    PLANT PROTECTION SCIENCE, 2017, 53 (02) : 78 - 84
  • [10] Ionic Homeostasis and Growth Characteristics of Tomato (Solanum lycopersicum L.) Grown with Municipal Wastewater by Supplying Silicon, Farmyard Manure and Plant Growth Promoting Rhizobacteria
    Muhammad Ashraf
    Sher Muhammad Shahzad
    Muhammad Abid
    Khalid Mehmood
    Ahsan Aziz
    Aleem Sarwar
    Naeem Akhtar
    Muhammad Mehran
    Silicon, 2022, 14 : 12855 - 12867