Bayesian semiparametric modeling of response mechanism for nonignorable missing data

被引:0
|
作者
Sugasawa, Shonosuke [1 ]
Morikawa, Kosuke [2 ]
Takahata, Keisuke [3 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka, Japan
[3] Keio Univ, Grad Sch Econ, Mitato Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
Longitudinal data; Markov Chain Monte Carlo; Multiple imputation; Polya-gamma distribution; Penalized spline;
D O I
10.1007/s11749-021-00774-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference with nonresponse is quite challenging, especially when the response mechanism is nonignorable. In this case, the validity of statistical inference depends on untestable correct specification of the response model. To avoid the misspecification, we propose semiparametric Bayesian estimation in which an outcome model is parametric, but the response model is semiparametric in that we do not assume any parametric form for the nonresponse variable. We adopt penalized spline methods to estimate the unknown function. We also consider a fully nonparametric approach to modeling the response mechanism by using radial basis function methods. Using Polya-gamma data augmentation, we developed an efficient posterior computation algorithm via Gibbs sampling in which most full conditional distributions can be obtained in familiar forms. The performance of the proposed method is demonstrated in simulation studies and an application to longitudinal data.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [11] Bayesian Analysis of Tweedie Compound Poisson Partial Linear Mixed Models with Nonignorable Missing Response and Covariates
    Wu, Zhenhuan
    Duan, Xingde
    Zhang, Wenzhuan
    ENTROPY, 2023, 25 (03)
  • [12] Estimating treatment effects under untestable assumptions with nonignorable missing data
    Gomes, Manuel
    Kenward, Michael G.
    Grieve, Richard
    Carpenter, James
    STATISTICS IN MEDICINE, 2020, 39 (11) : 1658 - 1674
  • [13] A SEMIPARAMETRIC BAYESIAN APPROACH TO MULTIVARIATE LONGITUDINAL DATA
    Ghosh, Pulak
    Hanson, Timothy
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2010, 52 (03) : 275 - 288
  • [14] Bayesian Joint Semiparametric Mean-Covariance Modeling for Longitudinal Data
    Liu, Meimei
    Zhang, Weiping
    Chen, Yu
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2019, 7 (03) : 253 - 267
  • [15] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Zhi-qiang Li
    Liu-gen Xue
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 125 - 132
  • [16] Mixtures of semiparametric varying coefficient models for longitudinal data with nonignorable dropout
    Li, Zhi-qiang
    Xue, Liu-gen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (01): : 125 - 132
  • [17] Bayesian semiparametric stochastic volatility modeling
    Jensen, Mark J.
    Maheu, John M.
    JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 306 - 316
  • [18] Smoothed partially linear quantile regression with nonignorable missing response
    Zhang, Ting
    Wang, Lei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 441 - 479
  • [19] Parametric fractional imputation for mixed models with nonignorable missing data
    Yang, Shu
    Kim, Jae-Kwang
    Zhu, Zhengyuan
    STATISTICS AND ITS INTERFACE, 2013, 6 (03) : 339 - 347
  • [20] Stop or Continue Data Collection: A Nonignorable Missing Data Approach for Continuous Variables
    Paiva, Thais
    Reiter, Jerome P.
    JOURNAL OF OFFICIAL STATISTICS, 2017, 33 (03) : 579 - 599