Bayesian semiparametric modeling of response mechanism for nonignorable missing data

被引:0
|
作者
Sugasawa, Shonosuke [1 ]
Morikawa, Kosuke [2 ]
Takahata, Keisuke [3 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa, Chiba, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka, Japan
[3] Keio Univ, Grad Sch Econ, Mitato Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
Longitudinal data; Markov Chain Monte Carlo; Multiple imputation; Polya-gamma distribution; Penalized spline;
D O I
10.1007/s11749-021-00774-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference with nonresponse is quite challenging, especially when the response mechanism is nonignorable. In this case, the validity of statistical inference depends on untestable correct specification of the response model. To avoid the misspecification, we propose semiparametric Bayesian estimation in which an outcome model is parametric, but the response model is semiparametric in that we do not assume any parametric form for the nonresponse variable. We adopt penalized spline methods to estimate the unknown function. We also consider a fully nonparametric approach to modeling the response mechanism by using radial basis function methods. Using Polya-gamma data augmentation, we developed an efficient posterior computation algorithm via Gibbs sampling in which most full conditional distributions can be obtained in familiar forms. The performance of the proposed method is demonstrated in simulation studies and an application to longitudinal data.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [1] Bayesian semiparametric modeling of response mechanism for nonignorable missing data
    Shonosuke Sugasawa
    Kosuke Morikawa
    Keisuke Takahata
    TEST, 2022, 31 : 101 - 117
  • [2] A SEMIPARAMETRIC APPROACH FOR ANALYZING NONIGNORABLE MISSING DATA
    Xie, Hui
    Qian, Yi
    Qu, Leming
    STATISTICA SINICA, 2011, 21 (04) : 1881 - 1899
  • [3] SEMIPARAMETRIC INFERENCE OF CAUSAL EFFECT WITH NONIGNORABLE MISSING CONFOUNDERS
    Sun, Zhaohan
    Liu, Lan
    STATISTICA SINICA, 2021, 31 (04) : 1669 - 1688
  • [4] QUANTITATIVE GENETIC MODELING AND INFERENCE IN THE PRESENCE OF NONIGNORABLE MISSING DATA
    Steinsland, Ingelin
    Larsen, Camilla Thorrud
    Roulin, Alexandre
    Jensen, Henrik
    EVOLUTION, 2014, 68 (06) : 1735 - 1747
  • [5] Bias Reduction in Logistic Regression with Missing Responses When the Missing Data Mechanism is Nonignorable
    Maity, Arnab Kumar
    Pradhan, Vivek
    Das, Ujjwal
    AMERICAN STATISTICIAN, 2019, 73 (04): : 340 - 349
  • [6] Bayesian Structural Equations Modeling for Ordinal Response Data with Missing Responses and Missing Covariates
    Kim, Sungduk
    Das, Sonali
    Chen, Ming-Hui
    Warren, Nicholas
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (16-17) : 2748 - 2768
  • [7] Parametric fractional imputation for nonignorable missing data
    Ji Young Kim
    Jae Kwang Kim
    Journal of the Korean Statistical Society, 2012, 41 : 291 - 303
  • [8] Parametric fractional imputation for nonignorable missing data
    Kim, Ji Young
    Kim, Jae Kwang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 291 - 303
  • [9] Bayesian Joint Semiparametric Mean–Covariance Modeling for Longitudinal Data
    Meimei Liu
    Weiping Zhang
    Yu Chen
    Communications in Mathematics and Statistics, 2019, 7 : 253 - 267
  • [10] Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates
    Wang, Zhi-Qiang
    Tang, Nian-Sheng
    BAYESIAN ANALYSIS, 2020, 15 (02): : 579 - 604