Multifunctional flexible porous liquefied bio-carbon nanofibers prepared from the combination of mangosteen (Garcinia mangostana) peels and monohydroxybenzene for supercapacitors applications

被引:10
作者
Iradukunda, Yves [1 ]
Wang, Guoying [1 ]
Li, Xin [1 ]
Shi, Gaofeng [1 ]
Albashir, Abdalazeez Ismail Mohamed [4 ]
Dusengemungu, Leonce [5 ]
Hu, Yawen [1 ]
Luo, Fenfang [1 ]
Yi, Kaiqiang [1 ]
Niu, Xiuli [2 ]
Wu, Zhijun [3 ]
机构
[1] Lanzhou Univ Technol, Sch Petrochem Engn, Lanzhou 730050, Peoples R China
[2] Gansu Food Inspect & Res Inst, Lanzhou 730050, Peoples R China
[3] Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China
[4] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China
[5] Copperbelt Univ, Sch Math & Nat Sci, Kitwe, Zambia
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
Liquefied carbon; Carbon nanofibers; Monohydroxybenzene; Renewable energy; Supercapacitor; REDUCTION REACTION ACTIVITY; ELECTRODE MATERIALS; PERFORMANCE; NITROGEN; OXYGEN; PYROLYSIS; ION;
D O I
10.1016/j.jelechem.2021.115228
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Supercapacitors are high power density energy storage systems with a fast charge, low-rate discharge, and excellent cycle stability. Herein, optimized method was reported to produce liquefied bio-carbon nanofibers (L-BCNF-x). This technique is based on the heating of combined mangosteen peels (MP) with monohydroxybenzene (C6H6O) in an oil bath, followed by electrospinning and carbonization under 700 degrees C for 1 h. After characterization, results showed that well-structured micro/mesoporous structures make the prepared L-BCNF-x with well-defined amorphous shapes. However, following the mingling of liquefied bio-carbon (LC) and (polyacrylonitrile) PAN at various mass ratios, the prepared L-BCNF-4 (6:4 mass ratio) holds an excellent electrochemical performance for supercapacitors with a specific capacitance of 365.5 F/g at 0.5 A/g and retention rate of 97.7% after 10,000 cycles. More significantly, the device exhibits a high energy density of 18 Wh/kg at a power density of 348.9 W/kg at 1 A/g current density. The performance of L-BCNF-4 was assigned to its large surface area (508.73 m2/g) which shortens the ion diffusion paths and rapid migration of electrons. Our experimental ensues prove that due to the simplicity and cost-effectiveness through the less use of PAN of the optimized introduced method, L-BCNF-x reveals promising future green energy production applications.
引用
收藏
页数:10
相关论文
共 56 条
[1]   State of the Art and New Directions on Electrospun Lignin/Cellulose Nanofibers for Supercapacitor Application: A Systematic Literature Review [J].
Adam, Abdullahi Abbas ;
Ojur Dennis, John ;
Al-Hadeethi, Yas ;
Mkawi, E. M. ;
Abubakar Abdulkadir, Bashir ;
Usman, Fahad ;
Mudassir Hassan, Yarima ;
Wadi, I. A. ;
Sani, Mustapha .
POLYMERS, 2020, 12 (12) :1-36
[2]  
Albashir A IM., 2021, J Energy Storage, V33
[3]   Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers [J].
Atiqah, M. S. Nurul ;
Gopakumar, Deepu A. ;
Owolabi, F. A. T. ;
Pottathara, Yasir Beeran ;
Rizal, Samsul ;
Aprilia, N. A. Sri ;
Hermawan, D. ;
Paridah, M. T. ;
Thomas, Sabu ;
Khalil, Abdul H. P. S. .
POLYMERS, 2019, 11 (11)
[4]   MnCo2O4@nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitors [J].
Cai, Ning ;
Fu, Jing ;
Chan, Vincent ;
Liu, Mingming ;
Chen, Weimin ;
Wang, Jianzhi ;
Zeng, Huan ;
Yu, Faquan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 :251-262
[5]   Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries [J].
Chen, Chen ;
Lu, Yao ;
Ge, Yeqian ;
Zhu, Jiadeng ;
Jiang, Han ;
Li, Yongqiang ;
Hu, Yi ;
Zhang, Xiangwu .
ENERGY TECHNOLOGY, 2016, 4 (11) :1440-1449
[6]   Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries [J].
Chen, Renzhong ;
Hu, Yi ;
Shen, Zhen ;
Pan, Peng ;
He, Xia ;
Wu, Keshi ;
Zhang, Xiangwu ;
Cheng, Zhongling .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12914-12921
[7]   Helically coiled carbon nanotube electrodes for flexible supercapacitors [J].
Cherusseri, Jayesh ;
Sharma, Raghunandan ;
Kar, Kamal K. .
CARBON, 2016, 105 :113-125
[8]   Poly(azomethine ether)-derived carbon nanofibers for self-standing and binder-free supercapacitor electrode material applications [J].
Choi, Young Chul ;
Kim, Min Su ;
Ryu, Kyoung Moon ;
Lee, Sang Hoon ;
Jeong, Young Gyu .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2020, 31 (11) :2874-2883
[9]  
EVI ASH, 2012, ASIAN J CHEM, V24, P579
[10]   Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid-liquid phase separation and pyrolysis process [J].
Fan, Hui-li ;
Ran, Fen ;
Zhang, Xuan-xuan ;
Song, Hai-ming ;
Jing, Wen-xia ;
Shen, Kui-wen ;
Kong, Ling-bin ;
Kang, Long .
ELECTROCHIMICA ACTA, 2014, 138 :367-375