Hyperbolic wavelet approximation

被引:93
作者
DeVore, RA [1 ]
Konyagin, SV
Temlyakov, VN
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Moscow MV Lomonosov State Univ, Dept OPU Mech Math, Moscow 117234, Russia
关键词
hyperbolic wavelets; multivariate wavelets; interpolation spaces;
D O I
10.1007/s003659900060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multivariate approximation by certain partial sums (hyperbolic wavelet sums) of wavelet bases formed by tensor products of univariate wavelets. We characterize spaces of functions which have a prescribed approximation error by hyperbolic wavelet sums in terms of a K-functional and interpolation spaces. The results parallel those for hyperbolic trigonometric cross approximation of periodic functions [DPT].
引用
收藏
页码:1 / 26
页数:26
相关论文
共 17 条
[1]  
[Anonymous], CBMS REGIONAL C SERI
[2]   ON COMPACTLY SUPPORTED SPLINE WAVELETS AND A DUALITY PRINCIPLE [J].
CHUI, CK ;
WANG, JZ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 330 (02) :903-915
[3]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[4]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[5]   ON THE CONSTRUCTION OF MULTIVARIATE (PRE)WAVELETS [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (2-3) :123-166
[6]  
DeVore R., 1994, MAT ZAMETKI, V56, P36
[7]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[8]  
DeVore Ronald A., 1993, CONSTRUTIVE APPROXIM, V303, DOI DOI 10.1007/978-3-662-02888-9
[9]  
DIESTEL J, 1984, GRADUATE SERIES MATH
[10]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215