A Semi-Supervised Method for Predicting Cancer Survival Using Incomplete Clinical Data

被引:0
|
作者
Hassanzadeh, Hamid Reza [1 ]
Phan, John H. [2 ,3 ]
Wang, May D. [2 ,3 ,4 ]
机构
[1] Georgia Inst Technol, Dept Computat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prediction of survival for cancer patients is an open area of research. However, many of these studies focus on datasets with a large number of patients. We present a novel method that is specifically designed to address the challenge of data scarcity, which is often the case for cancer datasets. Our method is able to use unlabeled data to improve classification by adopting a semi-supervised training approach to learn an ensemble classifier. The results of applying our method to three cancer datasets show the promise of semi-supervised learning for prediction of cancer survival.
引用
收藏
页码:210 / 213
页数:4
相关论文
共 50 条
  • [41] Semi-supervised Learning for Predicting Total Knee Replacement with Unsupervised Data Augmentation
    Tan, Jimin
    Zhang, Bofei
    Cho, Kyunghyun
    Chang, Gregory
    Deniz, Cem M.
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [42] Semi-supervised Variational Autoencoder for Survival Prediction
    Palsson, Sveinn
    Cerri, Stefano
    Dittadi, Andrea
    Van Leemput, Koen
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 124 - 134
  • [43] Semi-supervised incremental hashing method
    Su, Hai
    Zhong, Yuchen
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [44] Semi-supervised data clustering using particle swarm optimisation
    Lai, Daphne T. C.
    Miyakawa, Minami
    Sato, Yuji
    SOFT COMPUTING, 2020, 24 (05) : 3499 - 3510
  • [45] Classifying Limited Resource Data Using Semi-supervised SVM
    Veeranjaneyulu N.
    Bodapati J.D.
    Buradagunta S.
    Ingenierie des Systemes d'Information, 2020, 25 (03): : 391 - 395
  • [46] Semi-supervised Emotion Recognition using Inconsistently Annotated Data
    Happy, S. L.
    Dantcheva, Antitza
    Bremond, Francois
    2020 15TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2020), 2020, : 286 - 293
  • [47] Semi-supervised Learning over Streaming Data using MOA
    Le Nguyen, Minh Huong
    Gomes, Heitor Murilo
    Bifet, Albert
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 553 - 562
  • [48] Semi-supervised text classification using positive and unlabeled data
    Yu, Shuang
    Zhou, Xueyuan
    Li, Chunping
    ADVANCES IN INTELLIGENT IT: ACTIVE MEDIA TECHNOLOGY 2006, 2006, 138 : 249 - 254
  • [49] Semi-Supervised Stream Clustering Using Labeled Data Points
    Treechalong, Kritsana
    Rakthanmanon, Thanawin
    Waiyamai, Kitsana
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 281 - 295
  • [50] Semi-Supervised Approach to Predictive Analysis Using Temporal Data
    Shenk, Kimberly
    Bertsimas, Dimitris
    Markuzon, Natasha
    MILITARY OPERATIONS RESEARCH, 2014, 19 (01) : 37 - 50