Clinical Predictors of Risk for Atrial Fibrillation: Implications for Diagnosis and Monitoring

被引:39
|
作者
Brunner, Kyle J. [1 ]
Bunch, T. Jared [2 ]
Mullin, Christopher M. [3 ]
May, Heidi T. [2 ]
Bair, Tami L. [2 ]
Elliot, David W. [4 ]
Anderson, Jeffrey L. [2 ]
Mahapatra, Srijoy [1 ]
机构
[1] St Jude Med Corp, Clin Affairs, St Paul, MN 55117 USA
[2] Intermountain Med Ctr, Intermt Heart Rhythm Specialists, Murray, UT USA
[3] NAMSA, Minneapolis, MN USA
[4] Valam Corp, New York, NY USA
关键词
RHYTHM-MANAGEMENT; ISCHEMIC-STROKE; BLOOD-PRESSURE; PREVALENCE; COHORT; ASSOCIATION; DRONEDARONE; PROGNOSIS; SCORE; MEN;
D O I
10.1016/j.mayocp.2014.08.016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To create a risk score using clinical factors to determine whom to screen and monitor for atrial fibrillation (AF). Patients and Methods: The AF risk score was developed based on the summed odds ratios (ORs) for AF development of 7 accepted clinical risk factors. The AF risk score is intended to assess the risk of AF similar to how the CHA(2)DS(2)-VASc score assesses stroke risk. Seven validated risk factors for AF were used to develop the AF risk score: age, coronary artery disease, diabetes mellitus, sex, heart failure, hypertension, and valvular disease. The AF risk score was tested within a random population sample of the Intermountain Healthcare outpatient database. Outcomes were stratified by AF risk score for OR and Kaplan-Meier analysis. Results: A total of 100,000 patient records with an index follow-up from January 1, 2002, through December 31, 2007, were selected and followed up for the development of AF through the time of this analysis, May 13, 2013, through September 6, 2013. Mean +/- SD follow-up time was 3106 +/- 819 days. The ORs of subsequent AF diagnosis of patients with AF risk scores of 1, 2, 3, 4, and 5 or higher were 3.05, 12.9, 22.8, 34.0, and 48.0, respectively. The area under the curve statistic for the AF risk score was 0.812 (95% CI, 0.805-0.820). Conclusion: We developed a simple AF risk score made up of common clinical factors that may be useful to possibly select patients for long-term monitoring for AF detection. (C) 2014 Mayo Foundation for Medical Education and Research.
引用
收藏
页码:1498 / 1505
页数:8
相关论文
共 50 条
  • [1] Postoperative atrial fibrillation: risk predictors and clinical impact
    Stronati, Giulia
    Guerra, Federico
    Costarelli, Giulia
    Guidotti, Giorgio
    Urbinati, Alessia
    Ciliberti, Giuseppe
    Cipolletta, Laura
    Dello Russo, Antonio
    Alessandro, Capucci
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2019, 21 (0J) : J198 - J198
  • [2] Clinical predictors of the risk of AF - implications for monitoring
    Brunner, K. J.
    Bunch, T. J.
    Mullin, C. M.
    Mahaptra, S.
    EUROPEAN HEART JOURNAL, 2012, 33 : 123 - 123
  • [3] Risk predictors for lone atrial fibrillation
    Taggar, Jaspal S.
    Lip, Gregory Y. H.
    EUROPACE, 2008, 10 (01): : 6 - 8
  • [4] Predictors of nonpulmonary vein triggers for atrial fibrillation: A clinical risk score
    Thind, Munveer
    Oraii, Alireza
    Chaumont, Corentin
    Arceluz, Martin R.
    Sekigawa, Masahiro
    Yogasundaram, Haran
    Sugrue, Alan
    Mirwais, Maiwand
    AlSalem, Ahmed B.
    Zado, Erica S.
    Guandalini, Gustavo S.
    Markman, Timothy M.
    Deo, Rajat
    Schaller, Robert D.
    Dixit, Sanjay
    Epstein, Andrew E.
    Supple, Gregory E.
    Tschabrunn, Cory M.
    Santangeli, Pasquale
    Callans, David J.
    Hyman, Matthew C.
    Nazarian, Saman
    Frankel, David S.
    Marchlinski, Francis E.
    HEART RHYTHM, 2024, 21 (06) : 806 - 811
  • [5] Predictors of Atrial Ectopy and Their Relationship to Atrial Fibrillation Risk
    Kerola, Tuomas
    Dewland, Thomas
    Vittinghoff, Eric
    Heckbert, Susan
    Stein, Phyllis
    Marcus, Gregory M.
    CIRCULATION, 2018, 138
  • [6] Predictors of atrial ectopy and their relationship to atrial fibrillation risk
    Kerola, Tuomas
    Dewland, Thomas A.
    Vittinghoff, Eric
    Heckbert, Susan R.
    Stein, Phyllis K.
    Marcus, Gregory M.
    EUROPACE, 2019, 21 (06): : 864 - 870
  • [7] Clinical and electrocardiographic predictors of recurrent atrial fibrillation
    Dilaveris, PE
    Gialafos, EJ
    Andrikopoulos, GK
    Richter, DJ
    Papanikolaou, V
    Poralis, K
    Gialafos, JE
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 2000, 23 (03): : 352 - 358
  • [8] Clinical predictors of atrial fibrillation in Brugada syndrome
    Bigi, Mohamad Ali Babai
    Aslani, Arnir
    Shahrzad, Shahab
    EUROPACE, 2007, 9 (10): : 947 - 950
  • [9] Predictors of regional atrial myocardial fibrosis: implications for obesity atrial fibrillation
    Abed, H.
    Nelson, A. J.
    Carbone, A.
    Alasady, M.
    Leong, D. P.
    Kelly, D.
    Worthley, S. G.
    Abhayaratna, W. P.
    Wittert, G. A.
    Sanders, P.
    EUROPEAN HEART JOURNAL, 2011, 32 : 931 - 931
  • [10] Cerebral Amyloid Angiopathy Diagnosis, Clinical Implications, and Management Strategies in Atrial Fibrillation
    DeSimone, Christopher V.
    Graff-Radford, Jonathan
    El-Harasis, Majd A.
    Rabinstein, Alejandro A.
    Asirvatham, Samuel J.
    Holmes, David R., Jr.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 70 (09) : 1173 - 1182