Sequential Parameter Estimation for Mammalian Cell Model Based on In Silico Design of Experiments

被引:16
作者
Wang, Zhenyu [1 ]
Sheikh, Hana [1 ]
Lee, Kyongbum [1 ]
Georgakis, Christos [1 ]
机构
[1] Tufts Univ, Dept Chem & Biol Engn & Syst, Res Inst Chem & Biol Proc, Medford, MA 02155 USA
关键词
Pharmaceutical Processes; Mammalian Cell Culture; sensitivity analysis; parameter estimation; Design of Experiments; DYNAMIC-MODEL; SENSITIVITY-ANALYSIS; CULTURE; METABOLISM; INDEXES;
D O I
10.3390/pr6080100
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Due to the complicated metabolism of mammalian cells, the corresponding dynamic mathematical models usually consist of large sets of differential and algebraic equations with a large number of parameters to be estimated. On the other hand, the measured data for estimating the model parameters are limited. Consequently, the parameter estimates may converge to a local minimum far from the optimal ones, especially when the initial guesses of the parameter values are poor. The methodology presented in this paper provides a systematic way for estimating parameters sequentially that generates better initial guesses for parameter estimation and improves the accuracy of the obtained metabolic model. The model parameters are first classified into four subsets of decreasing importance, based on the sensitivity of the model's predictions on the parameters' assumed values. The parameters in the most sensitive subset, typically a small fraction of the total, are estimated first. When estimating the remaining parameters with next most sensitive subset, the subsets of parameters with higher sensitivities are estimated again using their previously obtained optimal values as the initial guesses. The power of this sequential estimation approach is illustrated through a case study on the estimation of parameters in a dynamic model of CHO cell metabolism in fed-batch culture. We show that the sequential parameter estimation approach improves model accuracy and that using limited data to estimate low-sensitivity parameters can worsen model performance.
引用
收藏
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 2013, DESIGN ANAL EXPT
[2]  
[Anonymous], 2015, Optimization Toolbox User's Guide
[3]   An interior point algorithm for large-scale nonlinear programming [J].
Byrd, RH ;
Hribar, ME ;
Nocedal, J .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) :877-900
[4]   Sensitivity analysis for the reduction of complex metabolism models [J].
Degenring, D ;
Froemel, C ;
Dikta, G ;
Takors, R .
JOURNAL OF PROCESS CONTROL, 2004, 14 (07) :729-745
[5]  
Draper NR, 1998, Applied Regression Analysis, V326
[6]   Mean-squared-error-based method for parameter ranking and selection with noninvertible fisher information matrix [J].
Eghtesadi, Zahra ;
McAuley, Kimberley B. .
AICHE JOURNAL, 2016, 62 (04) :1112-1125
[7]   Development and analysis of a mathematical model for antibody-producing GS-NS0 cells under normal and hyperosmotic culture conditions [J].
Ho, Yingswan ;
Varley, Julie ;
Mantalaris, Athanasios .
BIOTECHNOLOGY PROGRESS, 2006, 22 (06) :1560-1569
[8]   Design of In Silico Experiments as a Tool for Nonlinear Sensitivity Analysis of Knowledge-Driven Models [J].
Kiparissides, Alexandros ;
Georgakis, Christos ;
Mantalaris, Athanasios ;
Pistikopoulos, Efstratios N. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (18) :7517-7525
[9]   Advances and selected recent developments in state and parameter estimation [J].
Kravaris, Costas ;
Hahn, Juergen ;
Chu, Yunfei .
COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 :111-123
[10]   Mathematical Modeling and Parameter Estimation of Intracellular Signaling Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages [J].
Lee, Dongheon ;
Ding, Yufang ;
Jayaraman, Arul ;
Kwon, Joseph S. .
PROCESSES, 2018, 6 (03)